Publications

View my Google Scholar profile

For pdf copies, please visit the journals’ website via the links provided, or e-mail me.

  1. Boardman, L.^, Marcelino, A.P.^, Valentin, R.E., Boncristiani, H., Standley, J.M. and Ellis, J.D. (2023). Novel eDNA approaches to monitor Western honey bee (Apis mellifera L.) microbial and arthropod communities. Environmental DNA, https://doi.org/10.1002/edn3.419. ^Joint first author.
  2. Chen, C., Aldridge, R.L., Gibson, S., Kline, J., Aryaprema, V., Qualls, W., Xue, R., Boardman, L., Linthicum, K.J., and Hahn, D.A. (2023). Developing radiation-based sterile insect technique (SIT) for controlling Aedes aegypti: identification of a sterilizing dose. Pest Management Science 79(3), 1175-1183. https://doi.org/10.1002/ps.7303.
  3. Boardman, L., Lockwood, J., Lockwood, J., Angiletta, M., Krause, J., Lau, J., Loik, M., Simberloff, D., Thawley, C., and Meyerson, L. (2022). The future of invasion science needs physiology. Bioscience 72(12), 1204-1216. https://doi.org/10.1093/biosci/biac080.
  4. Boardman, L., Srivastava, P., Jeyaprakash, A., Moore, M., Whilby, L., and Ellis, J.D. (2021). A qPCR assay for sensitive and rapid detection of African A-lineage honey bees (Apis mellifera). Apidologie 52, 767-781. https://doi.org/10.1007/s13592-021-00863-9.
  5. Aldridge, R.L., Kline, J., Coburn, J.M., Britch, S.C., Boardman, L., Hahn, D.A., Chen, C., and Linthicum, K.J. (2020). Gamma-irradiation reduces survivorship, feeding behaviour, and oviposition of female Aedes aegypti. Journal of the American Mosquito Control Association 36(3), 152-160. https://doi.org/10.2987/20-6957.1
  6. Chen, C., Condon, C., Boardman, L., Meagher, R.L., Jeffers, L.A., Bailey, W.D. and Hahn, D.A. (2020). Critical PO­2 as a diagnostic biomarker for the effects of low-oxygen modified and controlled atmospheres on phytosanitary irradiation treatments. Pest Management Science 76(7), 2333-2341. https://doi.org/10.1002/ps.5768
  7. *Meyerson, L., Simberloff, D., Boardman, L., and Lockwood, J. (2019). Toward “rules” for studying biological invasions. Bulletin of the Ecological Society of America 100(4):e01607. https://doi.org/10.1002/bes2.1607
  8. Boersma, N., Boardman, L., Gilbert, M. and Terblanche, J.S. (2019). Cold treatment enhances low-temperature flight performance in false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Agricultural and Forest Entomology 21, 243-251. https://doi.org/10.1111/afe.12326
  9. Boardman, L., Mitchell, K.A., Terblanche, J.S. and Sørensen, J.G. (2018). A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. Journal of Insect Physiology 106, 179-188. https://doi.org/10.1016/j.jinsphys.2017.10.005
  10. Boersma, N., Boardman, L., Gilbert, M. and Terblanche, J.S. (2018). Sex-dependent thermal history influences cold tolerance, longevity and fecundity in false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Agricultural and Forest Entomology 20, 41-50. https://doi.org/10.1111/afe.12227
  11. Terblanche, J.S., Mitchell, K.A., Uys, W., Short, C.S. and Boardman, L. (2017). Thermal limits to survival and activity in two life-stages of false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Physiological Entomology 42, 379-388. https://doi.org/10.1111/phen.12210
  12. Mitchell, K.A., Boardman, L., Clusella-Trullas, S. and Terblanche, J.S. (2017). Effects of nutrient and water restriction on thermal tolerance: a test of mechanisms and hypotheses. Comparative Physiology and Biochemistry Part A 212, 15-23. https://doi.org/10.1016/j.cbpa.2017.06.019
  13. Boardman, L., Sørensen, J.G., Grout, T.G., and Terblanche, J.S. (2017). Molecular and physiological insights into the potential efficacy of CO2-augmented postharvest cold treatments for false codling moth. Postharvest Biology and Technology 132, 109-118. https://doi.org/10.1016/j.postharvbio.2017.06.002
  14. Boardman, L., Sørensen, J.G., Koštál, V., Simek, P. and Terblanche, J.S. (2016). Chilling slows aerobic metabolism to improve anoxia tolerance of insects. Metabolomics 12:176. https://doi.org/10.1007/s11306-016-1119-1
  15. Boardman, L., Sørensen, J.G., Koštál, V., Simek, P. and Terblanche, J.S. (2016). Cold tolerance is not affected by oxygen availability despite changes in anaerobic metabolites. Scientific Reports 6:32856. https://doi.org/10.1038/srep32856
  16. Gudowska, A., Boardman, L. and Terblanche, J.S. (2016). The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor. Journal of Experimental Biology 219, 2423-2425. https://doi.org/10.1242/jeb.135129
  17. McCue, M.D., Boardman, L., Clusella-Trullas, S., Kleynhans, E. and Terblanche, J.S. (2016). The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. Journal of Experimental Biology 219, 1893-1902. https://doi.org/10.1242/jeb.138669
  18. Weldon, C. W., Boardman, L., Marlin, D. and Terblanche, J.S. (2016). Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Frontiers in Zoology 13:15. https://doi.org/10.1186/s12983-016-0147-z
  19. Verberk, W.C.E.P., Overgaard, J., Ern, R., Bayley, M., Wang, T., Boardman, L. and Terblanche, J.S. (2016). Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Physiology and Biochemistry A 192: 64-78. https://doi.org/10.1016/j.cbpa.2015.10.020
  20. Boardman, L., Sørensen, J.G. and Terblanche, J.S. (2015). Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Journal of Insect Physiology 82: 75-84. https://doi.org/10.1016/j.jinsphys.2015.09.001
  21. Boardman, L. and Terblanche, J.S. (2015). Oxygen safety margins set thermal limits in an insect model system. Journal of Experimental Biology 218: 1677-1685. https://doi.org/10.1242/jeb.120261. Featured in “Inside JEB” in the Journal of Experimental Biology.
  22. Esterhuizen, N., Clusella-Trullas, S., van Daalen, C.E., Schoombie, R.E., Boardman, L. and Terblanche, J.S. (2014). Effects of within-generation thermal history on flight performance of Ceratitis capitata: Colder is better. Journal of Experimental Biology 217: 3545-3556. https://doi.org/10.1242/jeb.106526
  23. Terblanche, J.S., de Jager, Z., Boardman, L. and Addison, P. (2014). Physiological traits suggest limited diapause response in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Journal of Applied Entomology 138: 683-691. https://doi.org/10.1111/jen.12116
  24. Clusella-Trullas, S., Boardman, L., Faulkner, K., Peck, L.S. and Chown, S.L. (2014). Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island. Antarctic Science 26: 145-152. https://doi.org/10.1017/S0954102013000473
  25. Schoombie, R.E., Boardman, L., Groenewald, B., Glazier, D.S., van Daalen, C.E., Clusella-Trullas, S. and Terblanche, J.S. (2013). High metabolic and water-loss rates in caterpillar aggregations: evidence against the resource-conservation hypothesis. Journal of Experimental Biology 216: 4321-4325. https://doi.org/10.1242/jeb.095554. Featured in Nature Research Highlights.
  26. Boardman, L., Sørensen, J.G., and Terblanche, J.S. (2013). Physiological responses to fluctuating thermal – and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. Journal of Insect Physiology 59: 781-794. https://doi.org/10.1016/j.jinsphys.2013.05.005
  27. Boardman, L., Grout, T.G. and Terblanche, J.S. (2012). False codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera, Tortricidae) larvae are chill susceptible. Insect Science 19: 315-328. https://doi.org/10.1111/j.1744-7917.2011.01464.x
  28. Boardman, L., Terblanche, J.S., Hetz, S.K., Marais, E. and Chown, S.L. (2012). Reactive oxygen species and discontinuous gas exchange in insects. Proceedings of the Royal Society B: Biological Sciences 279(1730): 893-901. https://doi.org/10.1098/rspb.2011.1243
  29. Boardman, L., Sørensen, J.G., Johnson, S.A. and Terblanche, J.S. (2011). Interactions between controlled atmospheres and low temperature tolerance: A review of biochemical mechanisms. Frontiers in Physiology 2(92). https://doi:10.3389/fphys.2011.00092.
  30. Boardman, L., Terblanche, J.S. and Sinclair, B.J. (2011). Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae). Journal of Insect Physiology 57(8): 1154-1162. https://doi.org/10.1016/j.jinsphys.2011.04.022
  31. Boardman, L., van der Merwe, L., Lochner, C., Kinnear, C.J., Seedat, S., Stein, D.J., Moolman-Smook, J.C. and Hemmings, S.M.J. (2010). Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population. Comprehensive Psychiatry 52(2): 181-187. https://doi.org/10.1016/j.comppsych.2010.05.007
  32. Lachenicht, M.W., Clusella-Trullas, S., Boardman, L., Le Roux, C. and Terblanche, J.S. (2010). Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of Insect Physiology 56(7):822-830. https://doi.org/10.1016/j.jinsphys.2010.02.010

 Mitochondrial genome announcements

  1. Boardman, L., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). Mitochondrial genome of Apis mellifera anatoliaca (Hymenoptera: Apidae) – the Anatolian honey bee. Mitochondrial DNA Part B: Resources 5(2), 1876-1877. https://doi.org/10.1080/23802359.2020.1751737
  2. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). The mitochondrial genome of the Maltese honey bee, Apis mellifera ruttneri (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B: Resources 5(1), 877-878. https://doi.org/10.1080/23802359.2020.1717384
  3. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). The complete mitochondrial genome of Apis mellifera jemenitica (Insecta: Hymenoptera: Apidae), the Arabian honey bee. Mitochondrial DNA Part B: Resources 5(1), 875-876. https://doi.org/10.1080/23802359.2020.1717383
  4. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). The mitochondrial genome of the Spanish honey bee, Apis mellifera iberiensis (Insecta: Hymenoptera: Apidae), from Portugal. Mitochondrial DNA Part B: Resources 5(1), 17-18. https://doi.org/10.1080/23802359.2019.1693920
  5. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). The complete mitochondrial genome of the West African honey bee Apis mellifera adansonii (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B: Resources 5(1), 11-12. https://doi.org/10.1080/23802359.2019.1693308
  6. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2020). The mitochondrial genome of Apis mellifera simensis (Hymenoptera: Apidae), an Ethiopian honey bee. Mitochondrial DNA Part B: Resources 5(1), 9-10. https://doi.org/10.1080/23802359.2019.1693307
  7. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2019). The mitochondrial genome of the Carniolan honey bee, Apis mellifera carnica (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B: Resources 4(2), 3288-3290. https://doi.org/10.1080/23802359.2019.1671250
  8. Boardman, L., Eimanifar, A., Kimball, R.T., Braun, E. L., Fuchs, S., Grünewald, B., Ellis, J.D. (2019). The complete mitochondrial genome of Apis mellifera unicolor (Insecta: Hymenoptera: Apidae), the Malagasy honey bee. Mitochondrial DNA Part B: Resources 4(2), 3286-3287. https://doi.org/10.1080/23802359.2019.1671247

*not peer-reviewed