PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

Semantic Representation and Analysis (SRA) and Its Application
in Conversation-Based Intelligent Tutoring Systems (CbITS)

Xiangen Hu | The University of Memphis and Central China Normal University
Zhigiang Cai and Andrew Olney | The University of Memphis

ABSTRACT

This chapter provides an overview of semantic spaces and introduces a mathematical framework called
Semantic Representation and Analysis (SRA) developed by the authors. It then demonstrates how such
a framework enables efficient conversationbased learning environments, using AutoTutor as an example of
conversation-based learning environments. The chapter uses an alternative model of intelligent tutoring
systems and argues that SRA is most useful in knowledge representation of the domain and in enhancement
of evaluation methods in conversation-based learning environments.

It has long been a dream of learning scientists to produce computerized learning environments that enable
computers to teach human deep knowledge similar to skilled human tutors (du Boulay & Luckin, 2001).
According to explanation-based constructivist theories of learning (Aleven & Koedinger, 2002; VanLehn,
Jones, & Chi, 1992), an effective and deep learning environment needs to be able to guide the learner to
generate explanations and functional procedures. To provide this kind of instruction, researchers have been
trying to develop intelligent tutoring systems (ITS) that adaptively respond to the learner’s actions and
language inputs (Anderson, Corbett, Koedinger, & Pelletier, 1995). One of the challenging tasks in such
systems is to infer what the learner knows from natural language input.

Over the last few decades, substantial research has investigated technologies such as text mining and natural
language processing (NLP) to address this challenge. These technologies are the basis for producing so-called
semantic spaces. A semantic space represents the semantics of language entities (words, phrases, sentences,
etc.) and the similarity as distances between them (Dumais, Furnas, Landauer, Deerwester, & Harshman,
1988; Landauer, Foltz, & Laham, 1998; Riordan & Jones, 2011). Although it was originally developed for
entirely different purposes such as information retrieval (IR; Furnas et al., 1988; Landauer et al., 1998), it has
been used for assessment of learning, cognitive modeling, and a variety of other learning tasks (Landauer,
2003). One of the most wellknown examples of a semantic space is latent semantic analysis (LSA) (Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer, 2006), and it has been used widely in advanced
learning environments such as conversation-based ITS for over 20 years (Nye, Graesser, & Hu, 2014). Semantic
encoding and decoding algorithms similar to LSA have been developed and applied, such as latent Dirichlet
allocation (LDA; Blei, Ng, & Jordan, 2003; Hoffman, Bach, & Blei, 2010; Shams & Baraani-Dastjerdi, 2017),
GloVe (Pennington, Socher, & Manning, 2014), and Word2Vec (Goldberg & Levy, 2014; Rong, 2014; Yu &
Dredze, 2014). Semantic spaces have primarily been used to measure learning and to provide a cognitive
model of the learner. The advances in research, development, and application of semantic spaces made this
dream of learning scientists a possibility.

In this chapter, we will first provide a brief overview of semantic spaces and introduce a mathematical framework
called Semantic Representation and Analysis (SRA) developed by the authors (Hu et al., 2014). Then we will
demonstrate how such a framework would enable efficient conversation-based learning environments. Our
example of a conversation-based learning environment will be AutoTutor (Graesser, Dowell, & Clewley, 2017;
Graesser, Hu, & Person, 2001; Nye, Graesser, & Hu, 2014; Nye, Graesser, Hu, & Cai, 2014).

SEMANTIC REPRESENTATION AND ANALYSIS (SRA)

Semantic Representation and Analysis (SRA) is a canonical class of models that was first introduced by
the authors when they attempted to measure differences between different semantic encoding and decoding
methods (Hu, Cai, Graesser, & Ventura, 2005). It was then used as a general framework in extracting,

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

representing, and applying semantic analysis in a conversation-based ITS (Hu et al., 2014). SRA can be
understood as a class of methods in computational linguistics analysis (Gabrilovich & Markovitch, 2007;
Landauer, McNamara, Dennis, & Kintsch, 2013) that specialized in encoding and decoding semantics from a
large body of texts.

A Brief Overview of Vector-Based Semantic Models There are two ways to categorize semantic models.
When considering the original definition of semantics, a class of semantic models is called distributional
models where semantic meanings of language entities are defined by the ways they have associated with
other language entities (Harris, 1954; Riordan & Jones, 2011). As an intuitive example, in a distributional
model, the semantic meaning of a word is defined by how the word appears in language environments (such
as paragraphs) with other words in a selected body of text data. Another way to categorize semantic models
is based on the resulting mathematical form of the semantic representation. Vector-based model is a class of
semantic models in which the final semantic representation is in the form of a vector. Vector representation
of the semantics of a term can be obtained by human experts. For example, the word association norms
(Nelson, McEvoy, & Schreiber, 2004), in which each term is associated with a small collection of other terms,
is an example of a vector-based model where the dimension of the vector is large, but each term vector only
has a small number of nonzero elements. In general, vector representation can be explicit or latent with the
similar computations (Hu, Cai, Wiemer-Hastings, Graesser, & McNamara, 2007).

The basic vector-based model has been used for decades in information retrieval (Salton, Wong, & Yang,
1975). In their original model, words are orthogonal, so semantic similarity judgments are too brittle to be
of use in learning environments. However, the basic model was later extended by latent semantic indexing
(LSI) for information retrieval (Deerwester et al., 1990). The breakthrough provided by LSI is a solution
to the synonymy problem, in which multiple words can express similar meaning. In the basic vector-based
model, distinct words with similar meaning are kept distinct, but LSI gives them equivalent or near equivalent
meanings. LSI’s solution to the synonymy problem made it attractive to a variety of researchers outside of
information retrieval (Graesser et al., 2001; Hu, Cai, Franceschetti, et al., 2003; Hu, Cai, Louwerse, Olney,
Penumatsa, & Graesser, 2003; Landauer et al., 1998; Olney & Cai, 2005a, 2005b; Wolfe et al., 1998).

While the meaning of words seems to be very well encoded in LSI (currently often referred to as LSA, for
latent semantic analysis), the meaning of each dimension of an LSI space is unknown. Latent Dirichlet
allocation (LDA; Blei et al., 2003) provided an acceptable solution to this. LDA assumes (1) each document
in a given corpus is a mixture of a given set of topics with a probability distribution over the topics; (2) each
word appears in a topic with a certain probability, and (3) each word in a given document is drawn from a
topic with the given topic probability and the word probability. The topic probability distribution of each
document and the word probability distribution of each word is determined by maximizing the likelihood of
the given corpus. Once determined, each word has a probability value on each topic and thus gets a vector
representation as weights to the given topics. What made researchers excited about LDA is that the words
with the highest probabilities in each topic often form a good interpretation of the topic. In other words,
researchers can often see what a topic is by looking at the words ranked at the top by probability. Once an
LDA model is built (i.e., the document topic probabilities and the topic word probabilities are found), any
text can be represented by a vector known as “topic proportion scores,” indicating how much each known
topic is contained in a text. Similar to LSI, such vector representation can be used to compute semantic
similarities between texts (Cai, Li, Hu, & Graesser, 2016). Word2Vec is a more recent way of generating
word vector representations. Word2Vec uses two-layer neural networks to train vectors from a given corpus.
The basic idea is to position word vectors in a space so words that share common contexts are located closely
(Goldberg & Levy, 2014).

Similar to LSA (Deerwester et al., 1990; Landauer et al., 1998), most of the other methods such as LDA
(Blei et al., 2003; Hoffman et al., 2010; Shams & Baraani-Dastjerdi, 2017), and Word2Vec (Goldberg & Levy,
2014; Rong, 2014; Yu & Dredze, 2014) are examples of vector space models. In the next section, we outline
the steps to create vector-based semantic spaces. The Complexity of Creating Vector-Based Semantic Models
Conceptually, representing the semantic meaning of a term in the form of vectors is intuitive, at least to those
who think computationally. The goal of creating an alternative vector (mathematical) representation of the
semantic of the original language entities is to make it possible for computers to compute semantic relations
between the relevant language entities. There are several available computational/statistical techniques to

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

achieve this goal. As an example, LSA uses singular value decomposition (SVD; Golub & Kahan, 1965). SVD
is a technique that creates an approximation of the original word by document matrix. Other vector space
models (such as LDA, Word2Vec) most often used recently are results of sophisticated statistical techniques
that represent the similarity between collections of words as vectors “distance” in multidimensional space
(Manning & Schiitze, 1999). The process begins by collecting text into a corpus. A matrix is created from the
corpus, having one row for each unique word in the corpus and one column for each document or paragraph.
The cells of the matrix consist of a simple count of the number of times word i appeared in document j. Since
each document only contains a small number of word types, the matrix is often highly sparse. Weightings are
often applied to the cells that take into account the frequency of word i in document j and the frequency of
word i across all documents, such that distinctive words that appear infrequently are given the most weight.
Two collections of words of arbitrary size are compared by creating two vectors. Each word is associated with
a row vector in the matrix, and the vector of a collection is simply the sum of all the row vectors of words in
that collection. Vectors are compared geometrically by the cosine of the angle between them. This geometric
interpretation is likely the reason that vector space models have become so popular: the interpretation is
simple, clean, and elegant (Hu et al., 2007).

To explicitly outline the above-described process, we use the example steps of LSA to offer a taste of the
complexity of the process. There are seven steps: ED: There are 9 steps listed:

1. Selection of a domain. This is determined by the purpose of semantic space. For example, a semantic
space may be used as a semantic engine for a tutoring system of a specific domain (Franceschetti et al.,
2001; Olde, Franceschetti, Graesser, & Karnavat, 2002) or for grading essays in a given subject (Foltz,
Laham, & Landauer, 1999).

2. Selection of corpora. This step involves collecting and selecting relevant texts for the given domain. For
example, if the domain is physics, there is a choice of textbooks, research articles, or both.

3. Processing of raw material. It is possible that collected material contains not only text but also graphics
(a bitmap of a scanned document). Even if the materials are texts, there may be strings that are tags
and attributes (for example, in HTML files). This step also includes inserting a proper sentence or
paragraph markers. In some cases, it is at this step that the researcher may need to decide the size of
the document.

4. Obtain word-document frequency matrix A. at this step, one needs to decide the value of each entry of
the matrix as a function of global weight gi (weight of the word i) and local weight 1j (weight of the
document j) and the frequency of word i in document j: fij. It usually takes the form of (A)ji = giljfij.
Notice that gi, 1j, and fij can take different forms.

5. Decomposition of the word-document matrix to represent words by vectors. There are different ways
one could process the matrix. Even SVD is the most popular method used, but one could use others to
represent words as vectors.

6. Dimensional reduction. This is the step to determine how many dimen sions are enough for a vector
representation. Some scholars report that 300 is the best for some applications (Landauer et al., 1998).
However, there are cases in which higher dimensions are used.

7. Processing of the vectors. This is the step to decide (1) if the first dimension of the word vector needs to
be removed, and (2) if the dimensions need to be weighted (Hu, Cai, Franceschetti, et al., 2003). After
the seven steps, each word is represented as an n-dimensional vector with n being a number chosen at
step 7: There are also different ways to use the vectors to compute similarity.

8. Similarity computation. Cosine is the default similarity measure for LSA. Researchers have also
suggested that other similarity measures can be used.

9. Use of the similarity value. In the case of comparing similarity values between documents, one could use
the value by itself, or one could use the value and consider the size (number of words) of the document.

Other semantic spaces such as Hyperspace Analogue to Language (HAL; Burgess, 1998) and non-latent
similarity (NLS) algorithm (Cai et al., 2004) are only different from LSA in some of the steps (such as step
5, for example). The first three of the above-listed steps are essential for generating any semantic spaces.
To make sure a given semantic space is truly domain-specific, some special domain and corpora selection
algorithms need to be used. For example, the so-called seeding method suggested by Cai et al. (2018) makes
them intuitive and efficient.

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

The seeding method starts with a small seed corpus representing the core of a domain. By comparing with a
general reference corpus, the domain keywords are extracted and each keyword is assigned a “keyness” value.
With these keyness values, documents in a large corpus (e.g., Wikipedia articles) are ranked by the total sum
of keyness of words in each document. Top documents are then be selected into the domain-specific corpus.

In general, there are many parameters that need to be determined for any semantic space. One of the
challenges is to select the best set of parameters for a given application. For example, there are possible
alternatives for each of the nine steps outlined above. With so many choices at each of the steps, the resulting
number of semantic spaces is combinatorial. This makes it impractical to evaluate and select an appropriate
semantic space for a given application. The general framework of vector-based semantic space called semantic
representation and analysis (SRA; Hu et al., 2014) was introduced to tackle the problem of semantic space
evaluation and selection.

Semantic Representation and Analysis (SRA) Framework Considering common properties of the popular
vector-based semantic spaces such as LSA or LDA, a formal definition of vector-based semantic spaces was
introduced in order to build a unified mathematical framework to measure differences between semantic
spaces (Definition 1; Hu et al., 2005): A vector-based semantic space contains five components:

A set of words X0 = { x1,. .. ,xn }. A hierarchy of layers: X1, XM, where an element in set Xi is a
finite ordered array of elements in Xi—1,1i =1, . . . , M. Vector representation for elements in each of the
layers. A measure of similarity between elements within each of the layers. Maps from vector representation
of layer Xi—1 to vector representation of Xi, i = 1, . . . , M. This definition can be summarized in three
basic assumptions of vectorbased semantic spaces (Hu et al., 2005, 2014): Hierarchical. Semantics of different
levels of a language entity may be represented differently. Algebraic. The semantics of any level of language
entities must be capable of being represented numerically or algebraically. Computational. The semantic
representations of a higher-level language entity are computed as a function of semantic representations for
its lower-level language entities. At the lowest level of language entities, a numerical semantic comparison
measure must exist between any two items (e.g., words).

With these assumptions, especially, the computational assumption, it is possible to consider any vector-based
semantic space as induced semantic structure (ISS; Hu et al., 2005, 2014). When considering the ISS of a
vector-based semantic space, a word is represented as its (numerical) semantic relation with other words in the
space. For example, the semantic meaning of life can be expressed as nearest neighbors (Table 1 of Hu et al.,
2005). Intuitively, ISS can be understood as “nearest semantic neighbors” but with several useful properties.
Among them are three additional types of semantic similarity measures (combinatorial, permutational, and
quantitative) that can be used to measure semantic similarity between semantic spaces (Hu et al., 2005).

Although the original goal of introducing SRA was for the purpose of evaluating the quality of semantic
spaces and selecting appropriate semantic spaces from among multiple spaces produced from a different
set of parameters, the ISS of SRA and the derived similarity measures made it possible for an intuitive
interpretation of similarity (Hu et al., 2005) and computer implementation (Hu et al., 2014).

CONVERSATION-BASED INTELLIGENT TUTORING SYSTEMS (CBITS)

The Institute of Electrical and Electronics Engineers (IEEE) recently approved a standard committee for
Adaptive Instructional Systems (AIS; P2247.1—Standard for the Classification of Adaptive Instructional
Systems). This is one of the significant milestones to advance personalized learning, which is identified
by the National Academy of Engineering as one of the grand challenges of the 21st century (http://
www.engineeringchallenges.org/9127.aspx). Conversation-based intelligent tutoring systems (CbITS) is a
class of AIS that are among the most studied and efficiently implemented in the last 20 years. One of the
reasons for the advances is largely due to the use of NLP, especially the use of semantic encoding and decoding
algorithms such as LSA (Graesser, Penumatsa, Ventura, Cai, & Hu, 2007).

AutoTutor as an Example Implementation of CbITS To demonstrate the use of SRA in CbITS, this chapter
will use a successful implementation of CbITS called AutoTutor (Graesser et al., 2004; Nye, Graesser, & Hu,
2014; Nye, Graesser, Hu, & Cai, 2014; Person et al., 2000). AutoTutor holds conversations with humans

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

in natural language. The authors of this chapter are among those who have developed multiple versions
of AutoTutor that teach critical thinking (Graesser et al., 2010; Wallace et al., 2009), computer literacy
(Graesser et al., 2004; Person, 2003), physics (Graesser et al., 2003), reading (Graesser et al., 2016), and
electronics (Morgan et al., 2018).

AutoTutor applications are built with the guidance of human learning principles (Graesser, Halpern, & Hakel,
2008), such as deep questioning, to help students learn by holding deep reasoning conversations (Graesser &
Person, 1994). AutoTutor converses with learners following the expectation-misconception tailored (EMT)
dialogue (Graesser et al., 2004) pattern. An AutoTutor conversation often starts with a main question about
a certain topic. The goal of the conversation is to help students construct an acceptable answer (expected
answers) to the main question. Instead of telling students the answers, AutoTutor asks a sequence of questions
(hints, prompts) that target specific concepts involved in the ideal answer to the main question. AutoTutor
systems respond to students’ natural language input, as well as other interactions, such as making a choice,
arranging some objects in the learning environment, etc.

A Formal Framework of CbITS In this section, we introduce a simple and formal (mathematical) framework
of CbITS. Again, we use AutoTutor as a typical CbITS. From the perspective of this framework, we analyze
AutoTutor and then show the role of SRA in AutoTutor. The formal model is based on a behavioristic
account of AutoTutor. In a typical tutoring session, AutoTutor interacts with students with the following five
steps: AutoTutor (1) provides a seed question, (2) gets a response from the learner, (3) evaluates the response,
(4) selects the next item, and (5) delivers the item to the learner. The minimum content requirements for a
functional AutoTutor implementation would be a “bag” of items. These items are in the form of questions,
pumps, prompts, hints, elaborations, or summaries (Nye, Graesser, & Hu, 2014). For each item, there may be
associated elements. For example, in AutoTutor, prompt completions are elements that are used to evaluate
the student’s responses to the prompts. In this model, items are generically defined, such that each item
can have possible purposes (diagnostic, grounding, etc.) or be a question, simple feedback, elaboration, and
so on. Items are also organized such that the organization can reflect the domain knowledge and teaching
knowledge of the tutor. AutoTutor always starts with a main question. The interactive dialogue between
AutoTutor and Learner can be simplified into a repetition of four turns:

1. AutoTutor selects an item and presents to the student.
2. The student responds to the selected item.

3. AutoTutor evaluates the student’s response.

4. AutoTutor selects the next item based on the evaluation.

Although AutoTutor always starts with a seed question, the student’s response (step 3) can be a follow-up
question (considered as student initiative), so AutoTutor is a typical mixed-initiative dialogue system with
natural language interaction (Graesser et al., 2007). The interaction repeats until the AutoTutor select
an item that does not require a response from the student. In the above simplification of tutor-student
interaction, the knowledge of the tutor is represented by certain items and the relationship among them.
The teaching tactics are also represented by certain items, their relations, and most importantly, the way
the tutor selects them. In this model, the student model is indirectly represented by the evaluation of a
stimulus-response pair. AutoTutor evaluates student’s input as a semantic representation vector and its
relations with associated elements (such as answers corresponding to the given items such as hints or prompts).
The mathematical model that goes with the above description can be explicitly formulated as the following
components.

Knowledge representation. A set X = { x1,. .. ;xn} is a set of items with an algebraic structure modeled as
a subset of X x X. An item may be a collection of structured elements. Evaluation method. The evaluation
method uses a function that assigns a vector of numerical values to any combination of (xi, ri), where ri is a
generic notation for response of item xi, The evaluation model is generically denoted as En(i) = (xi, fn(xi,
ri)), AutoTutor’s evaluation of student’s response ri to items xi presented on nth turn. Selection mechanism.
A selection mechanism is a conditional probability distribution for any item x as the nth iteration between
the tutor and student. Pn{xi} = Pr{xi|En-1(in-1), . . . ,E1(i1)}. Delivery model. A delivery model specifies
how any selected item xi is presented in a given turn n. Several factors go into this model: the structure
of the elements contained in the item, the frequency of how other items have been selected, and how items

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

were presented in previous turns. The above is a general model that may be used to describe both the
outer loop and the inner loop of ITS (VanLehn, 2006). The evaluation method may be different for different
ITS implementations. For CbITS such as AutoTutor, the evaluation method uses similarity measures of a
domain-specific vector-based semantic model.

SRA IN CBITS

We now illustrate roles that SRA could play in CbITS and critical issues that occur when SRA is used
in CbITS. We continue to use AutoTutor as an illustrative example. The basic interaction mechanism of
AutoTutor is guided by EMT. EMT contains a well-organized (as knowledge representation) set of items such
as expectations, pumps, prompts, hints, and elaborations. Some of the items, such as expectations, prompts,
and hints, require answers so they can be used to evaluate students’ input. These answers in CbITS are
in the form of natural language; hence SRA can serve as their semantic answers. With the formal model
of CbITS outlined in the previous section, it is obvious that SRA can be used in the first two of the four
components, knowledge representation and evaluation method. For example, an expectation for an EMT
in ElectronixTutor (Graesser, Hu, et al., 2017) could be: In cut-off mode, the transistor works as an open
switch when both the emitter and collector junctions are reverse-biased.

Some expected answers may be typical good answers, and some of them are typical bad answers:

Good Answer 1: In cut-off mode, the transistor works as an open switch when both emitter and collector
junctions are reverse-biased.

Bad Answer 1: In cut-off mode, the transistor works as a closed switch when both emitter and collector
junctions are forward-biased.

Bad Answer 2: In cut-off mode, the transistor works as an amplifier.
Bad Answer 3: In cut-off mode, both emitter and base junctions are reverse-biased.

For each of the expectations, there are multiple hints and prompts. For example, this is a hint that helps
students understand the expected answers:

Under what junction bias conditions will the transistor operate as an open switch in the cut-off mode?
Corresponding to this hint, there are possible good answers and bad answers.

Good Answer: When both emitter and collector junctions are reverse-biased.
Bad Answer 1: When both emitter and collector junctions are forward-biased.
Bad Answer 2: When both emitter and base junctions are reverse-biased.

In the same way, prompts are similar to hints, but the answers are shorter. For example, this is a prompt:
Both emitter and collector junctions are biased in what direction in cutoff mode, when the transistor works
as an open switch? With very short answers:

Good Answer: In reverse-biased
Bad Answer: In forward-biased

In AutoTutor EMT dialogue (Graesser et al., 2004), multiple prompts and hints are associated with each
expectation. It is obvious that SRA can be used to represent semantic keys for all the answers. The semantic
keys on one hand are used to create relationship between these items, so SRA may help to build knowledge
representation. Most importantly, it is used to compare answers with students’ natural language contributions.

Requirements for SRA in CbITS From the above example, we observe that (1) answers to expectations,
hints, and prompts are in the form of natural language, and (2) good answers and bad answers only differ in
keywords. For example, the expected answers for the hint “Under what junction bias conditions will the
transistor operate as an open switch in the cut-off mode?” are “When both emitter and collector junctions
are reverse-biased” (good answer) and “When both emitter and collector junctions are forward-biased” (bad
answer). For most of the widely used semantic encoding and decoding methods, it is not easy to distinguish

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

highly similar texts when large portions of the two texts are the same (Hu et al., 2007). In addition, efficient
ITS applications are domain-specific, interaction between ITS and students should be context-sensitive, and
most desirable, adaptive and individualized. With these requirements for an ideal CbITS, effective and
efficient SRA should have additional attributes: SRA should be domain specific. The examples of SRA
we have described in this chapter are generic framework for semantic processing. Most of the widely used
semantic encoding and decoding methods share the common properties. They are started with a large body
of texts. The selection of the texts is the key for domain specificity. For example, a semantic representation
for term plane in mathematics (Figure 4.1a) should be different from that in a general domain (Figure 4.1b).
The key steps for domain-specific semantic encoding are the first two steps, namely selection of a domain and
selection of corpora.

SRA should be used in conjunction with other methods. Very often, typical good answers and bad answers
only differ in key terms or presence or absence of negations. For example, “When both emitter and collector
junctions are reverse-biased.” and “When both emitter and collector junctions are forward-biased.” are a
good answer and a bad answer for a hint. SRA’s evaluation of students’ input will not be sensitive because
the two answers have high levels of similarity (common texts; Hu et al., 2007). It would be easier and more
efficient to use other methods such as regular expression (Thompson, 1968) for comparison.

DISCUSSION

Enabling computers to understand natural language and converse with humans has been a continuous effort
for generations of scientists. From the computer therapist Eliza (Weizenbaum et al., 1966) 50 years ago to
the most recent implementation of AutoTutor (Graesser et al., 2004; Nye, Graesser, & Hu, 2014), the key
enabling technology is to let computers efficiently compare similarity between texts.

FIGURE 4.1 ISS for plane (a) created from a large corpus of mathematics-related texts and generated using
the seeding methods (Cai et al., 2018), and (b) semantic space created from a general purpose text corpus .

There are different ways to compute similarity between texts. The easiest and most intuitive way is to
count the number of common words. The more sophisticated way is to semantically encode terms, sentences,
and documents for each of the texts and then compute their semantic similarity. To apply the semantic
encoding technology in learning science, there are two challenges: (1) how fast to generate a domain-specific
and contextsensitive semantic representation for a given application, and (2) how to systematically evaluate
quality of the semantic representation for a given application. This chapter tries to offer a solution for both
challenges by introducing a general framework of semantic representation. High quality domain-specific
and context sensitive semantic representation enable an effective and efficient conversation-based intelligent
tutoring system (CbITS).

CbITS plays a very important role in learning science and technology. CbITS implementations are directly
inspired by human tutors. The current CbITS prototypes such as AutoTutor (Graesser et al., 2004; Nye,
Graesser, & Hu, 2014) are built with the guide of learning principles from cognitive psychology. They are
proven effective and behaviorally similar to human tutors (VanLehn et al., 2007). In addition to CbITS, the
SRA framework may also be used in other applications and technologies in learning science. For example, it
can serve as general assessment framework to assess learners’ knowledge and build context-specific student
models (Hu, Morrison, & Cai, 2013) or to build student models in a team tutoring environment (Hu et al.,
2018).

CONCLUSIONS

Semantic encoding and decoding is one of the essential enabling technologies for conversation-based intelligent
tutoring system (CbITS). There are various ways to computationally represent the semantics of a piece of
text. In this chapter we used a general framework called Semantic Representation and Analysis (SRA). The
definition of SRA is general enough to capture most of the widely used semantic encoding and decoding
methods used in text mining. For illustrative purposes, we used latent semantic analysis (LSA) as a typical

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

instance of SRA to describe the process of creating domain-specific semantic representation. In this chapter,
we used AutoTutor as an typical example of CbITS. AutoTutor is an intelligent tutoring system that holds
conversations with humans in natural language. To explain how would SRA be used in

CDbITS, we used an alternative model of ITS and argue that SRA is most useful in knowledge representation
of the domain and in enhancement of evaluation methods in CbITS. Because CbITS applications are mostly
domain specific and conversational in nature (short answers with similar good or bad answers), we suggest
that SRA for any CbITS be domain specific and used in conjunction with other methods.

REFERENCES

Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing
and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147-179.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned.
Journal of the Learning Sciences, 4(2), 167-207.

Blei, D. M., Ng, A. Y., & Jordan, M. 1. (2003, January). Latent Dirichlet Allocation. Jour nal of Machine
Learning Research: JMLR, 3, 993-1022.

Burgess, C. (1998). From simple associations to the building blocks of language: Modeling meaning in
memory with the HAL model. Behavior Research Methods, Instruments, & Computers: A Journal of the
Psychonomic Society, Inc, 30(2), 188-198.

Cai, Z., Cheng, Q., Graesser, A. C., Shaffer;, D. W., Windsor, L. C., & Hu, X. (2018). Impact of corpus size
and dimensionality of LSA spaces from Wikipedia articles on AutoTutor answer evaluation. In K. E. Boyer
& M. Yudelson (Eds.), educational data mining (pp. 127-136). Buffalo, NY: EDM Society.

Cai, Z., Li, H., Hu, X., & Graesser, A. (2016). Can word probabilities from LDA be simply added up to
represent documents? In EDM (pp. 577-578). educationaldatamining.org

Cai, Z., McNamara, D. S., Louwerse, M., Hu, X., Rowe, M., Graesser, A. C., . . . Oth-
ers. (2004). NLS: A non-latent similarity algorithm. In Proceedings of the Annual Meet-
ing of the Cognitive Science Society (Vol. 26). cloudfront.escholarship.org. Retrieved from
https://cloudfront.escholarship.org/dist /prd/content /qt0sc5p977/qt0sc5p977.pdf

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.

du Boulay, B., & Luckin, R. (2001). Modelling human teaching tactics and strategies for tutoring systems.
International Journal of Artificial Intelligence in Education, 12(3), 235-256.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., & Harshman, R. (1988). Using latent
semantic analysis to improve access to textual information. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 281-285). New York: ACM.

Foltz, P. W., Laham, D., & Landauer, T. K. (1999). Automated essay scoring: Applications to educational
technology. In EdMedia: World Conference on Educational Media and Technology (pp. 939-944). Association
for the Advancement of Computing in Education (AACE).

Franceschetti, D. R., Karnavat, A., Marineau, J., McCallie, G. L., Olde, B. A., Terry, B. L., & Graesser,
A. C. (2001). Development of physics text corpora for latent semantic analysis. In Proceedings of the 23rd
annual conference of the cognitive science society (pp. 297-300). Erlbaum Mahwah, NJ.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A., Streeter, L. A., & Lochbaum,
K. E. (1988). Information retrieval using a singular value decomposition model of latent semantic structure.
In Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 465-480). New York: ACM.

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit
semantic analysis. In IJcAI 7, 1606-1611). aaai.org.

Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al’s negativesampling word-
embedding method. arXiv [cs.CL]. Retrieved from http://arxiv.org /abs/1402.3722

Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. Journal of
the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205-224.

Graesser, A., Britt, A., Millis, K., Wallace, P., Halpern, D., Cai, Z., . . . Forsyth, C. (2010). Critiquing
media reports with flawed scientific findings: Operation ARIES! A Game with animated agents and natural
language trialogues. In intelligent tutoring systems (pp. 327-329). Berlin, Heidelberg: Springer.

Graesser, A. C., Cai, Z., Baer, W. O., Olney, A. M., Hu, X., Reed, M., & Greenberg, D. (2016). Reading
comprehension lessons in AutoTutor for the Center for the Study of Adult Literacy. Adaptive educational
technologies for literacy instruction, 288-293.

Graesser, A. C., Dowell, N.; & Clewley, D. (2017). Assessing collaborative problem solving through
conversational agents. In A. A. Davier, M. Zhu, & P. C. Kyllonen (Eds.), Innovative assessment of collaboration
(pp. 65-80). Springer International Publishing.

Graesser, A. C., Halpern, D. F., & Hakel, M. (2008). 25 principles of learning. Washing ton, DC: Task Force
on Lifelong Learning at Work and at Home.

Graesser, A. C., Hu, X., Nye, B. D., VanLehn, K., Kumar, R., Heffernan, C., . . . Others. (2017).
ElectronixTutor: an intelligent tutoring system with multiple learning resources for electronics. International
Journal of STEM Education: Innovations and Research.

Graesser, A. C., Hu, X., & Person, N. (2001). Teaching with the help of talking heads. In Proceedings IEEE
International Conference on Advanced Learning Technologies (pp. 460-461).

Graesser, A. C., Jackson, G. T., Matthews, E. C., Mitchell, H. H., Olney, A., Ventura, M., . . . Others.
(2003). Why/AutoTutor: A test of learning gains from a physics tutor with natural language dialog. In
Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 25). cloudfront.escholarship.org.
Retrieved from https:// cloudfront.escholarship.org/dist/prd/content /qt6mj3q2v1/qt6mj3q2v1.pdf

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., & Louwerse, M. M.
(2004). AutoTutor: a tutor with dialogue in natural language. Behavior Research Methods, Instruments, &
Computers: A Journal of the Psychonomic Society, Inc, 36(2), 180-192.

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z., & Hu, X. (2007). Using LSA in AutoTutor: Learning
through mixed initiative dialogue in natural language. Handbook of Latent Semantic Analysis, 243-262.

Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Edu cational Research
Journal, 31(1), 104. Harris, Z. S. (1954). Distributional structure. Word & World, 10(2-3), 146-162.

Hoffman, M., Bach, F. R., & Blei, D. M. (2010). Ouline learning for latent Dirichlet allocation. In J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in Neural Information
Processing Systems 23 (pp. 856-864). Curran Associates, Inc.

Hu, X., Cai, Z., Franceschetti, D., Penumatsa, P., Graesser, A. C., Louwerse, M. M., & McNamara, D. S. (2003).
LSA: First dimension and dimensional weighting. In Proceedings of the Annual Meeting of the Cognitive
Science Society (Vol. 25). cloudfront.escholarship.org. Retrieved from https://cloudfront.escholarship.org/dist
/prd/content /qt0p352620/qt0p352620.pdf

Hu, X., Cai, Z., Graesser, A. C., & Ventura, M. (2005). Similarity between semantic spaces. In Proceedings
Of The 27th Annual Conference Of The Cognitive Science Society (pp. 995-1000). Hillsdale, NJ: LEA.

Hu, X., Cai, Z., Louwerse, M., Olney, A., Penumatsa, P., & Graesser, A. (2003). A revised algorithm for
latent semantic analysis. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(pp. 1489-1491). San Francisco, CA: Morgan Kaufmann Publishers Inc.

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A. C., & McNamara, D. S. (2007). Strengths, limitations,
and extensions of LSA. The Handbook of Latent Semantic Analysis, 401-426.

Hu, X., Dowell, N., Cai, Z., Graesser, A. C., Shi, G., Cockroft, J. L., & Shorter, P. (2018). Constructing
individual conversation characteristics curves (ICCC) for interactive intelligent tutoring environments (IITE).
In R. Sottilare, A. Graesser, X. Hu, and A. M. Sinatra (Ed.), Design recommendations for intelligent tutoring
systems: Volume 6—team tutoring (Vol. 6, p. 133). US Army Research Laboratory.

Hu, X., Morrison, D. M., & Cai, Z. (2013). Conversation-based intelligent tutoring system (Vol. 1, p. 97).
US Army Research Laboratory. Hu, X., Nye, B. D., Gao, C., Huang, X., Xie, J., & Shubeck, K. (2014).
Semantic representation analysis: A general framework for individualized, domain-specific and context-
sensitive semantic processing. In Foundations of augmented cognition: Advancing human performance and
decision-making through adaptive systems (pp. 35-46). Springer, Cham.

Landauer, T. K. (2003). Automatic essay assessment. Assessment in Education: Principles, Policy & Practice,
10(3), 295-308. Landauer, T. K. (2006). Latent semantic analysis. In Encyclopedia of cognitive science. John
Wiley & Sons, Ltd.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse
Processes, 25(2-3), 259-284. Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2013). Handbook
of latent semantic analysis. Psychology Press.

Manning, C. D., & Schiitze, H. (1999). Foundations of statistical natural language processing. MIT Press.

Morgan, B., Hampton, A. J., Cai, Z., Tackett, A., Wang, L., Hu, X., & Graesser, A. C. (2018). ElectronixTutor
integrates multiple learning resources to teach electronics on the web. In Proceedings of the Fifth Annual
ACM Conference on Learning at Scale (pp. 33:1-33:2). New York: ACM.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association,
rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers: A Journal of the
Psychonomic Society, Inc, 36(3), 402—407.

Nye, B. D., Graesser, A. C., & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language
tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-469.

Nye, B. D., Graesser, A. C., Hu, X., & Cai, Z. (2014). AutoTutor in the cloud: A serviceoriented paradigm for
an interoperable natural-language ITS. Journal of Advanced Distributed Learning Technology, 2(6), 35—48.

Olde, B. A., Franceschetti, D. R., Graesser, A. C., & Karnavat, A. (2002). The right stuff: Do you need to san-
itize your corpus when using latent semantic analysis? In Proceedings of the Annual Meeting of the Cognitive
Science Society (Vol. 24). cloudfront.escholarship.org. Retrieved from https://cloudfront.escholarship.org/dist
/prd/content /qt56m7s0j2/qt56m7s0j2.pdf

Olney, A., & Cai, Z. (2005a). An orthonormal basis for entailment. In FLAIRS Confer ence (pp. 554-559).
aaai.org.

Olney, A., & Cai, Z. (2005b). An orthonormal basis for topic segmentation in tutorial dialogue. In Proceedings
of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing:
Association for Computational Linguistics.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
(pp. 1532-1543). aclweb.org.

Person, N. K. (2003). AutoTutor improves deep learning of computer literacy: Is it the dialog or the talking
head? Artificial Intelligence in Education: Shaping the Future of Learning Through Intelligent Technologies,
97, 47.

Person, N. K., Craig, C., Price, P., Hu, X., Gholson, B., & Graesser, A. C. (2000). Incorporating human-like
conversational behaviors into AutoTutor. In Proceedings of the Workshop on Achieving Human-like Behavior
in the Interactive Animated Agents at the Agents 2000 Conference (pp. 85-92).

10

PREPRINT - DIFFERS FROM FINAL PUBLISHED VERSION

Riordan, B., & Jones, M. N. (2011). Redundancy in perceptual and linguistic experience: Comparing
feature-based and distributional models of semantic representation. Topics in Cognitive Science, 3(2),
303-345. Rong, X. (2014). word2vec Parameter Learning Explained. arXiv [cs.CL]. Retrieved from
http://arxiv.org/abs/1411.2738

Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications
of the ACM, 18(11), 613—-620.

Shams, M., & Baraani-Dastjerdi, A. (2017). Enriched LDA (ELDA): Combination of latent Dirichlet allocation
with word co-occurrence analysis for aspect extraction. Expert Systems with Applications, 80, 136-146.

Thompson, K. (1968). Programming Techniques: Regular Expression Search Algorithm. Communications of
the ACM, 11(6), 419-422.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education, 16(3), 227-265.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007). When are tutorial
dialogues more effective than reading? Cognitive Science, 31(1), 3-62.

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation effect. Journal of the
Learning Sciences, 2(1), 1-59.

Wallace, P. S., Graesser, A. C., Millis, K. K., Halpern, D. F., Cai, Z., Britt, M. A., . . . Wiemer, K. (2009).
Operation ARIES! A computerized game for teaching scientific inquiry. In AIED (pp. 602-604). niu.edu.

Weizenbaum, J., et al. (1966). ELIZA—a computer program for the study of natural language communication
between man and machine. Communications of the ACM, 9(1), 36-45.

Wolfe, M. B. W., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch, W., & Landauer, T. K.
(1998). Learning from text: Matching readers and texts by latent semantic analysis. Discourse Processes,
25(2-3), 309-336.

Yu, M., & Dredze, M. (2014). Improving lexical embeddings with semantic knowledge. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
(pp. 545-550). aclweb.org.

11

	Semantic Representation and Analysis (SRA) and Its Application in Conversation-Based Intelligent Tutoring Systems (CbITS)
	ABSTRACT
	SEMANTIC REPRESENTATION AND ANALYSIS (SRA)
	CONVERSATION-BASED INTELLIGENT TUTORING SYSTEMS (CBITS)
	SRA IN CBITS
	DISCUSSION
	CONCLUSIONS
	REFERENCES

