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ABSTRACT 
We investigate automatic analysis of teachers’ instructional 
strategies from audio recordings collected in live classrooms. We 
collected a data set of teacher audio and human-coded instructional 
activities (e.g., lecture, question and answer, group work) in 76 
middle school literature, language arts, and civics classes from 
eleven teachers across six schools. We automatically segment 
teacher audio to analyze speech vs. rest patterns, generate automatic 
transcripts of the teachers' speech to extract natural language 
features, and compute low-level acoustic features. We train 
supervised machine learning models to identify occurrences of five 
key instructional segments (Question & Answer, Procedures and 
Directions, Supervised Seatwork, Small Group Work, and Lecture) 
that collectively comprise 76% of the data. Models are validated 
independently of teacher in order to increase generalizability to new 
teachers from the same sample. We were able to identify the five 
instructional segments above chance levels with F1 scores ranging 
from 0.64 to 0.78. We discuss key findings in the context of teacher 
modeling for formative assessment and professional development. 
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1. INTRODUCTION 
Dialogic instruction is a form of classroom discourse that is 
characterized by thought-provoking discussions between teachers 
and students with the goal of facilitating a meaningful exchange of 
ideas intended to elicit deeper student thought and analysis. The 
dialogic approach to classroom instruction positively correlates 
with student engagement [16] and achievement [2, 24]. For 
example, in a two year, large-scale study of dialogic instruction, 
Nystrand et al. coded classroom activities for 256 class sessions, 
covering 2,141 students across 25 schools [23]. After controlling 
for gender, race/ethnicity, socioeconomic status, school type (e.g., 
urban/rural, public/private), grade level, and prior achievement, a 
dialogic-oriented instructional style had positive effects on 
achievement. In particular, the proportion of time spent on 
discussion, open-ended questions with no scripted response, and 
instances of uptake (e.g., follow-up questions) correlated with 

student achievement [16, 22, 24]. These findings were replicated by 
another large-scale study of 974 students from 19 different schools 
across five states [2]. 

Despite these pedagogical benefits of dialogic instruction, 
classroom instruction continues to be dominated by traditional 
teacher-centric instructional techniques such as lecture, recitation, 
and seatwork [4]. But it need not be this way. Research has 
demonstrated that the quality of classroom instruction can be 
enhanced with teacher training programs [6], suggesting that dialogic 
instruction can be formatively assessed by classroom observations 
and improved via teacher professional development programs [15]. 
For example, research has demonstrated that discussing data-driven 
analysis of classroom practices with teachers correlates with 
student achievement [17]. 

The ability to provide teachers with qualitative and formative 
feedback on their instruction is paramount to improving and 
refining their teaching strategies over time. Regrettably, current 
efforts to assess the quality of classroom discourse rely on manual 
coding by trained observers, a labor and cost intensive endeavor that 
cannot be deployed practically, broadly, nor uniformly.  

To address this critical bottleneck, this study is part of a large multi-
disciplinary project that analyzes classroom instructional practices 
towards the goal of automatic analysis of classroom discourse. The 
automation of such analysis would lead to the development of a 
teacher model, for use in personalized assessment and professional 
development. In line with this, we present an approach to 
automatically identify key instructional segments (e.g., Question & 
Answer or Lecture) in live classrooms based solely on audio of 
teachers’ speech.  

1.1 Related Work 
The automatic analysis of text and discourse is a frequently studied 
research problem in education, such as in automatic essay analysis 
[12], evaluation of online discussions [20], plagiarism detection 
[3], or dialog-based intelligent tutoring systems [26]. The focus, 
however, has been on the student not on the teacher. There is a long 
research history on the use of audio (and video) to study instructional 
practices and student behaviors in live classrooms [1, 11] - most 
notably see [10]. However, the recorded signals are typically 
processed by humans; automatic analyses of classroom video and 
audio are few and far between. Thus, while there is an active field 
of automatic student modeling (or learner modeling) [29], the 
complementary field of teacher modeling is just beginning to 
emerge. 

The initial attempt at the automatic identification of components of 
instructional discourse from audio recordings appeared in 2013 by 
Wang et al. [30, 31]. The authors adapted the Language 
ENvironment Analysis (LENA) system [9], an expensive 
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proprietary microphone intended to be worn by preschool age 
children, to analyze teacher instruction. They recorded 608 hours 
of classroom audio from 12 teachers in 1st to 4th grade mathematics 
classes. They divided the recorded audio into 30 second segments. 
Two trained coders listened to each segment and annotated the 
dominant classroom activity: teacher lecture, class discussion, or 
student group work. They also provided a level of confidence for 
their annotations. Working independently, the coders achieved an 
agreement level of 83% (Cohen’s kappa, κ	= 0.72). The authors 
trained a random forest classifier to identify the dominant class 
activity of each 30 second segment, reporting an overall accuracy 
of 84% when compared to the human annotations. 

Although this result is an important first step in automated teacher 
activity analysis, some methodological concerns are warranted. In 
particular, the authors trained their classification model using the 
segments with highest confidence of one coder (62% of the data) 
and tested on the annotations on all segments of the second coder. 
Therefore, the same audio segments appeared in both the training 
and testing sets, albeit using different but highly correlated (83% 
similar) annotations. Second, the authors did not validate their 
model independently of the teacher, permitting examples from each 
teacher to appear in both the training and test sets. Therefore, it is 
difficult to ascertain if their model was successful in identifying 
components of the classroom activity or merely adjusting to 
patterns of speech of specific teachers. Third, all coding was 
completed offline solely based on the audio recording, thereby 
losing important visual contextual clues that would be available 
during a live-coding session. Finally, the authors consider only 
three types of classroom activity, seemingly forcing each 30 second 
segment into one of these broad categories and perhaps overlooking 
more subtle differences (e.g., individual work vs. group work). 

1.2 Current Contributions 
In this paper we describe a low-cost, non-invasive approach to 
analyze teacher instructional activities in live class sessions. As a 
proof-of-concept, we previously explored the automatic detection 
of Question & Answer segments on a dataset of 21 class sessions 
obtained from three teachers [5]. Using only recordings of teacher 
audio, we extracted 11 features pertaining to the timing of speech 
and rest patterns. We achieved an overall accuracy of 67% (AU-
ROC of 0.78) validated in a teacher-independent fashion.  

Since the eventual goal of this research is to enable wide-scale 
deployment across many teachers and schools, we design our 
system with the following design criteria: practicality, 
generalizability, and scalability [7]. In terms of practicality, the 
system must be usable by researchers and teachers with minimal 
training, and non-invasive as to not interfere with the teacher’s 
instruction nor distract students in any way. For this reason, we 
focus on recording the teachers, unlike approaches that record 
individual students [9]. It must be economically affordable so that a 
typical school can afford the system. Additionally, it must not have 
a human labor cost in that it should run autonomously without 
human monitoring. Second, the system must be able to generalize 
to new teachers, classrooms, and domains, hence, we must avoid 
heavily tuning to the specific teachers or classrooms when training 
the models. Finally, the system should be flexible enough to operate 
in a variety of classroom setups and should scale to larger 
classrooms with minimum loss in fidelity.  

The present study advances previous work (see above) and this 
proof-of-concept in several novel ways. First, we collected the 
largest dataset in this domain to date, drawn from recordings of 
multiple teachers across different schools coupled with annotations 

coded live during each class session. We explore features not 
previously used in this domain, including analysis of automatic 
speech transcriptions and acoustic features. We then train 
supervised classification models to identify five different key 
instructional segments based on audio recordings of the teacher, 
validated independently of the teacher and intended to generalize to 
new teachers.  

2. DATA COLLECTION 
Data was collected from U.S. middle school literature, language 
arts, and civics classes. Over the course of three semesters, data was 
collected from 76 class sessions, covering eleven different teachers 
(three male, eight female) across six schools. The teachers were not 
coached in the practice of dialogic instruction and were asked to 
carry out their normal lesson plan, allowing the capture of an 
unbiased real-world sample of teachers’ instructional practices. 

Each teacher wore a wireless microphone to capture their speech. 
Based on previous work [7], a Samson 77 Airline wireless 
microphone was chosen for its portability, noise-canceling abilities, 
and low-cost. The teacher’s speech was captured and saved as a 16 
kHz, 16-bit single channel audio file.  

Each class session lasted between 30 minutes to 90 minutes, 
depending on the school, with an average class length of 60:25 
minutes. These recordings, totaling over 76 hours, capture the 
gamut of events typical in a classroom, from focused instruction to 
distracting interruptions.  

2.1 Coding Classroom Discourse 
The Nystrand and Gamoran classroom coding scheme [21] 
considers a hierarchy of classroom events, ranging from general to 
more specific: (1) episodes refer to the general topic being 
addressed in the class (e.g., “the Civil War”); (2) instructional 
segments represent one the 17 possible instructional activities used 
to implement the episode (e.g., Lecture, Discussion), and (3) 
individual questions asked by teachers or students during some 
instructional segments. We focus on the second level of this coding 
scheme, the automatic identification of instructional segments. 

An observer who was trained in the Nystrand and Gamoran scheme 
was present during each recorded class session. The observer used 
software specifically developed for live coding of classroom 
discourse to mark episodes, instructional segments, and teacher’s 
dialogic questions as they occurred. Live coding allowed the 
observer to utilize visual information, which ostensibly yields 
additional information to contextualize the coding. For example, 
the coder may observe that students are working on a task in small 
groups rather than individually, an assessment that may be difficult 
to determine from the audio recording alone.  

There were three trained observers in this study. Each class session 
was coded by one observer, whose coding was subsequently 
verified by a second trained observer at a later time. Disagreements 
were discussed and the coding refined until both observers reached 
complete agreement. The instructional segments noted by the 
coders form the ground truth used to evaluate our classification 
models. 

2.2 Analysis of Instructional Segments 
We focus on detecting the five most frequent segments that 
individually comprised at least 10% of the data: Question & Answer 
(21%), Procedures and Directions (20%), Supervised Seatwork 
(12%), Small Group Work (11%), and Lecture (11%). Ironically, 
Discussion, an instructional segment important to student success, 
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represents only 1% of the dataset. Since Discussion is related to 
Question & Answer (both feature whole-class, interactive 
discourse), we combined the two segments in this study, leading to 
a Question & Answer occurrence of 22%. 

There are eleven additional types of instructional segments that 
occur less frequently, such as an occasional distraction, the 
discipline of a student, a test or quiz, or students engaging in silent 
reading. Individually, these segments are rare, but together they 
comprise 24% of the dataset. Although we do not build models for 
these segments, we retain them in our dataset as a Miscellaneous 
category. 

We refer to [21] for a full description of each of the five key 
segments. Briefly, in a Question & Answer segment, the teacher 
asks a question, one or more students may respond, and the teacher 
evaluates the response. These segments may feature pre-scripted 
test questions by the teacher or they may be open-ended, providing 
the opportunity to transition into a more in-depth Discussion 
segment. In Procedures and Directions, the teacher mainly 
communicates instructions, often as a transition to another 
instructional segment. Small Group Work divides the class into 
groups of two or more students to collaborate on a task. During 
Supervised Seatwork segments, students work independently on 
tasks while the teacher walks around and answers individual 
questions that arise. Lectures involve the delivery of pre-scripted 
material, occasionally supplemented with video.  

Error! Reference source not found. shows the class time spent on 
each of the five key instructional segments by each teacher. The 
individual teachers divide time differently, a reflection of their 
unique style. For example, two teachers did not assign any Small 
Group Work and three teachers did not spend any lesson time on 
Supervised Seatwork. There was also considerable variation over 
the different class sessions, even within each teacher, which reflects 
differences in lesson plans each day. In general, an individual 
teacher or class session may not contain all five instructional 
segments, a challenge we discuss in our results.  

 

 

Figure 1. Proportion of time spent by each of the eleven 
teachers on each of the instructional segments. For each 

teacher (each row), the total time across the six segments sums 
to 1.0. The proportion of total time spent on the segment 

within the dataset is shown last in gray. 

 

3. MODEL BUILDING 
In this section, we discuss our approach to building classification 
models for the identification of the key instructional segments. We 
present our approach to segmenting the teacher’s audio channel and 
generating automatic speech recognition transcripts, followed by 
discussion of our approach to partitioning the classroom recordings 
into windowed instances for classification. Finally, we present our 
feature extraction scheme and present our classification models.  

3.1 Partitioning Audio into Windows 
A system that is to be deployed in classrooms will not have the 
benefit of human coders present and we will be unable to determine 
the boundaries of the instructional segments. Although we could 
potentially build detectors to automatically infer segment 
boundaries, this itself is an unsolved research problem beyond the 
scope of this study. Therefore, we divided the recording of each 
class session into consecutive non-overlapping windows of time for 
classification. We examined non-overlapping windows to consider 
each moment of class time only within a single windowed instance 
as to not bias our results through classification of particularly easy 
or difficult segments multiple times in the dataset. Each window 
was assigned a label of the classroom activity using the segment 
annotations provided by the classroom coders. This label 
corresponds to the ground-truth for training and validation of the 
models.   

For the cases in which a particular window spans more than one 
annotation, the dominant classroom activity (in terms of time) was 
chosen as the segment annotation. An example of this process for a 
60-second window is illustrated in Figure 2. This approach, 
although an imperfect generalization, allows tracking the broader 
picture of the teacher’s time. In particular, the average segment is 
2.9 minutes long, which we use to inform our selection of possible 
window sizes. Specifically, we explored windows sizes ranging 
from 30 seconds to 5 minutes. 

 

 

Figure 2. Example of the windowing scheme for a sample of 
five minutes of class time considering a 60 second window. 

3.2 Utterance Segmentation 
Each recording represents an uninterrupted channel of teacher audio 
lasting the duration of the class session. In order to analyze teachers’ 
instructional practices, we must subdivide the audio signal into 
smaller audio chunks, each of which ideally represents an utterance 
spoken by the teacher. We adopted a method developed in [7] for 
teacher utterance extraction.  

Patterns of speech and rest differ between teachers as do 
unintentional noises such as breathing or coughing. Therefore, we 
employed a general method to segment utterances to avoid 
overfitting to specific teachers, potentially increasing the ability to 
generalize to new teachers. First, we analyzed the amplitude 
envelope of the audio to identify moments of silence in which the 
amplitude of the signal dropped below a predefined noise threshold, 
which was empirically tuned in previous work [5]. Whenever the 
amplitude remained below the threshold for at least one second, we 
identified this as a moment of silence in the recording and used this 
silence as a breakpoint from which to partition the recording into 
the smaller utterances (called potential utterances). This approach 
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is not without limitations, as each utterance may contain multiple 
ideas, or a single idea may be spread across several utterances. 

Next, we analyzed this set of potential utterances in order to retain 
those that contain the teachers’ speech and discard others (e.g., 
background noise, heavy breathing). To identify the utterances 
containing speech, we passed each through the Microsoft Bing 
automatic speech recognition (ASR) system [7]. If the ASR 
identified any speech within the potential utterance, we retained it 
as a speech utterance, otherwise we discarded it. In a validation 
study using 1000 randomly-sampled potential utterances, we 
achieved high levels of both precision (96.3%) and recall (98.6%) 
using this method. This resulted in an F1 score of 97.4% [7], which 
we deemed sufficiently accurate for the purposes of this study. 

Using this process on our dataset of 76 classroom recordings 
yielded 40,138 candidate utterances, 23,610 (59%) of which were 
retained as containing speech. The average length of these speech 
utterances is 5.24 seconds (SD = 8.17), however 2% of the 
utterances last over thirty seconds in length; for example, when the 
teacher makes a long statement without pausing.  

3.3 Feature Extraction 
We extracted features from each of the windows (see Figure 2 
above) to create the instances used to train and test our 
classification models. We explored three different types of features, 
two of which have not yet been explored for this task. Specifically, 
timing features capturing patterns of the teacher speaking and 
pausing have been previously considered [5, 31]. We 
complimented these with novel features generated from natural 
language processing of speech transcriptions of the teacher, no 
small task due to the noisy nature of the classroom. These features 
allow consideration of the specific words a teacher speaks, beyond 
the mere timing of speech. We also added acoustic features 
generated from the recording of the teacher. We chose these 
features to potentially help differentiate between speaking and 
silence, for example, or between the difference in classroom noise 
generated by a single speaker and the louder moments when many 
voices speak simultaneously, such as occurs during Small Group 
Work.  

Utterances Timing Features: We analyzed the timing of the 
extracted teacher utterances described in Section 3.2. For each 
partitioned window of time, we identified any speech utterances 
present within the windows. If any utterance straddled the boundary 
of the partitioned window, only the portion of the utterance 
contained within the window was considered. Using the timing of 
the utterances and considering any time between utterances as rest, 
we constructed a sequence of speech and rest. We then extracted 
six features from the speech-rest sequences: the number of 
occurrences, the total length of all utterances, the mean and standard 
deviation of utterance duration, and the durations of the longest and 
shortest utterance. In a similar manner, we extracted the same six 
features from the timing of the rest patterns. We added in one more 
feature representing the normalized temporal position of the 
window proportionate to the total length of the classroom 
recording, resulting in a total of 13 features. 

Natural Language Features: In prior work, we evaluated several 
different ASR engines on data recorded in the noisy classroom 
environment [4, 7]. We considered two metrics: word error rate 
(WER), a word level edit distance comparing the ASR and human 
transcripts, and simple word overlap (SWO), a measurement of 
proportion of words found in both transcripts. Bing ASR achieved 
a WER of 0.52 and a SWO score of 0.62. Although outperformed 
by the Google ASR engine, we selected Bing given its ability to 

freely transcribe large volumes of audio, an important consideration 
for broader deployment. 

Given an ASR transcript generated for each teacher speech 
utterance, we must extract meaningful language features that 
ostensibly capture differences in instructional segment. For this 
task, we employed a natural language feature tagger [25] that was 
specifically designed to classify questions and has been validated 
in studies of classroom discourse [27, 28]. We considered a set of 
high-level NLP features because the topics covered vary between 
class sessions and a bag-of-words analysis may not generalize since 
the course material is not likely to repeat between teachers. We 
extracted 37 natural language features, including counts of parts of 
speech (e.g., adjectives, nouns) and counts of particular words (e.g., 
what, how, why). Because the ASR transcriptions are time-stamped 
at the utterance level rather than the word level, we analyzed the 
entire utterance even if it overlapped with the time window.  

We include both the sum and mean of the 37 natural language 
features to attempt to capture differences of use within the window, 
for a total of 74 features. Although potentially correlated, the sum 
of the feature counts the number of times the feature occurred 
within the time window whereas the mean tracks the use of the 
feature averaged by number of utterances in the windows. For 
example, consider the question word “why.” The word may appear 
multiple times in a single long utterance, such as during a Lecture, 
or it may appear across of sequence of speech and rest by teacher, 
potentially signally a Question & Answer segment in which the 
teacher’s speech alternates with student responses.  

Acoustic Features: Lastly, we extracted a set of features based on 
the acoustic properties of the audio signal using the Music 
Information Retrieval toolbox for Matlab [18]. Unlike the other 
aforementioned modalities, these features were not extracted from 
segmented teacher utterances but directly from the window of 
audio. We did not calibrate the features by individual teacher to 
encourage generalization to new teachers in the future. These 
features include common descriptors that characterize volume, 
spectra, and the frequency curve of the signal. We include the 
following features: seven statistical moments describing the 
spectral distribution (centroid, flatness, spread, skew, kurtosis, and 
entropy); brightness, a measure of high energy (above 1500 Hz); 
zero crossing, a measure of noisiness counting the times the signal 
changes sign; two measures of roll-off, the frequency cutoff such 
that 85% and 95% of the total energy is below the cutoff; root-
mean-square energy, a global measure of the energy of the signal; 
low energy, the proportion of 50 millisecond frames with below 
average energy; and 13 Mel-frequency cepstral coefficients, a 
representation of the short-term power spectrum. Additionally, we 
included measures of voiced frequencies [8], including the global 
mean frequency and standard deviation of all voiced frequencies, 
the number of blocks of voiced syllables, and the average and 
standard deviation of these blocks. In all, we extracted 30 acoustic 
features from each time window. 

3.4 Supervised Classification 
We generated 117 features in total for each windowed partition of 
the audio recording. These features were used to train supervised 
classification models to identify instructional segments. As noted in 
Section 2.2, there was considerable data imbalance due to an 
infrequent occurrence of some segments and the high variance in 
use between different teachers and class sessions. Therefore, we 
prioritized the five most common segments, and trained an 
individual binary classifier to differentiate each segment from all 
others. For example, the Lecture classifier determines if each 
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instance in the dataset is an example of a Lecture segment or one of 
the other potential segments, whether another common segment or 
one of the 11 infrequently occurring Miscellaneous segments. 

We considered the Naïve Bayes classifier using the WEKA 
machine learning toolbox [14]. Naïve Bayes was chosen based on 
preliminary experiments with several other standard classifiers 
(e.g., logistic regression, support vector machine, k-nearest 
neighbor, decision tree, random forest) and because of its popular 
and successful use as a baseline classifier in many domains [19]. 

4. EXPERIMENTS AND RESULTS 
All experiments were conducted with a leave-one-teacher-out cross 
validation. For each of the 11 teachers, all instances stemming from 
that teacher’s class sessions were added to the test set and the 
training set was formed from instances of the other ten teachers. 
This process was repeated for each teacher such that each teacher 
appeared in the test set only once, and the results were calculated as 
the average of the 11 folds. This approach allows better 
generalization to new teachers, preventing the classification models 
from overfitting based on characteristics of individual teachers. 

In terms of metrics, accuracy, or recognition rate, is not an ideal 
measure when base rates between class labels are highly skewed, as 
they are in our data. Therefore, we evaluated the efficacy of our 
binary target segment vs. all others classifier models by examining 
the F1 score, a balance of precision and recall, for the class label of 
interest (i.e. the target segment such as Question & Answer). This 
ensures that we focus on the model’s ability to detect the segments 
of interest, which was always the minority label, rather than 
prioritizing the dominant class label (i.e. the other category). 

4.1 Comparing Window Time  
The size of an analysis window is an important design choice as it 
determines the temporal resolution of our predictions. While a 
shorter window will yield more fine-grained predictions, a longer 
window allows the consideration of more information for each 
prediction. In this experiment, we varied the window size ranging 
from 30 seconds to 300 seconds in increments of 30 seconds. The 
F1 scores for each target segment are shown in Figure 3. 

 
Figure 3. The F1 score of the target segment label for each 

window size. The average score of the five classifiers is 
represented as a dashed line. 

The results indicated that all five classifiers had lower performance 
on short window times, such as 30 seconds. Although performance 
generally increased with window size, longer windows resulted in 
fewer instances per class session. Furthermore, given the majority 
takes-all segment labeling approach described in Section 3.1, longer 
windows risk masking short occurrences of instructional segments. 
This effect is undesirable because it loses information about the use 
of class time. 

The results indicated that the optimal classification window might 
need to be varied between classification models for different 

segments. In future work, we will explore tuning the window size 
depending on the type of instructional segment to be classified. For 
the reminder of the experiments, we focused on a window size of 
120 seconds, which showed improved performance for all 
classifiers over shorter window sizes while not exceeding the 
average length of segments (176 seconds). A window size of 120 
seconds yielded 2,254 instances for classification across the 76 class 
sessions.  

4.2 Comparing Feature Types 
In our second experiment, we explore the relative effectiveness of 
the different feature types described in Section 3.3 in the 
classification of instructional segments. We trained a separate 
Naïve Bayes classifier for each of the three feature types (timing, 
NLP, or acoustic), and a fourth model which fused all three sets of 
features. The results are shown as Figure 4.  

We observe that NLP features were most successful in detecting 
Procedures and Directions, perhaps unsurprisingly as these 
segments feature common patterns of imperative instructions 
provided by the teacher. Timing of teacher’s speech and rest 
patterns aided in the classification of Question & Answer segments. 
The acoustic features were notably less useful in the classification 
of Small Group Work and Supervised Seatwork. As the present 
work only considers a recording of the teacher, it is likely that not 
enough information is available during these student-focused 
segments. Furthermore, the acoustic features may have difficulty in 
generalizing between male and female teachers as our current 
dataset contains more examples of female teachers.  

We compared the average F1 score across segments by feature type: 
timing (0.49), NLP (0.53), and acoustic (0.36) to the average score 
using all features (0.52). Although the average score of NLP 
features trivially exceeds the score of all features, we observe that 
the boost only comes from the Procedures and Directions classifier. 
Therefore, we consider all the features in the remaining 
experiments, although we will investigate additional feature 
engineering in future work. 

 
Figure 4. The F1 score of the target segment label for each of 
the three feature types and the combination of all features. 

4.3 Individual Feature Analysis 
Following the analysis of feature category in the previous section, 
we explored the utility of each of the 117 individual features. In this 
experiment, we trained a binary classifier for each single feature 
and for each instructional segment. We ranked the features by the 
F1 score for the target segment to explore the contribution of 
individual features. There was no clear pattern of features that 
worked best across the different segments. Overall, no single 
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feature achieved an F1 score greater than 0.25. This is unsurprising 
as we did not expect a single feature to dominate over the 
combination of many features.  

For Question & Answer segments, the ten most useful features were 
all NLP features and included features such as the number of 
occurrences of certain question words (e.g., “why”, “what”) and the 
number of proper nouns. This is an encouraging result, 
demonstrating the utility of our NLP features despite the noise 
introduced by the imperfect ASR transcription. Furthermore, this 
demonstrates the timing features that capture teacher speech-rest 
patterns, used in previous work [5, 31], should be supplemented 
with additional feature modalities. Procedures and Directions also 
benefited most from NLP features, although these features differed 
from those useful to detect Question & Answer. For Supervised 
Seatwork, we note that acoustic features account for seven of the 
top ten features. This is an encouraging result and support our 
hypothesis that student-focused segments may be difficult to 
identify based on the teacher’s speech, as the teacher may be silent 
for extended periods of time. No single feature alone achieved 
success in identifying Small Group Work from the other segments. 
However, since we are able to classify Small Group Work above 
chance levels using all features, this result underscores the utility 
of combinations of different features. The Lecture classifier best 
benefited from timing features, particularly those that described the 
length of moments of rest, which may necessary to determine non-
Lecture segments in which the teacher is silent for extended periods 
of time.  

4.4 Final Classification Results 
Informed by the previous experiments, we trained a set of Naïve 
Bayes classifiers, considering a window of 120 seconds and using 
all 117 features to generate 2,254 windowed instances for 
classification. In Table 1, we report the overall F1 score to provide 
a measure of the binary classifiers’ performance across both the 
class labels. The target F1 score tracks the performance of the 
classifier only on the target label of interest (e.g., Lecture). We 
include recognition rate (accuracy) and AU-ROC for comparison to 
other studies.  

 
Table 1. Classification results for each of the five instructional 

segments. Target F1 refers to the F1 score of the segment of 
interest, listed in each row, while overall F1 represents the 

weighted score considering both labels. 

 
Target 

F1 
Overall 

F1 
Rec. 
Rate 

AU-
ROC 

Target 
chance 

Question &   
Answer 

0.55 0.64 0.60 0.76 0.31 

Procedures/ 
Directions 

0.47 0.64 0.60 0.72 0.27 

Supervised 
Seatwork 

0.45 0.67 0.59 0.65 0.19 

Group Work 0.53 0.65 0.56 0.70 0.19 

Lecture 0.52 0.78 0.71 0.58 0.16 

Average 0.50 0.68 0.61 0.68 0.23 

      

For a binary dataset that contains an equal distribution of labels, an 
F1 score of 0.50 represents chance, and reflects a random 
assignment of the two labels. However, for datasets containing a 
large imbalance in the dataset, such as ours, the level of chance 
prediction is not as straightforward. For comparison to our target F1 

score, we calculated chance levels as follows. We considered 
chance-level precision as the precision of a classifier that always 
selects the target segment, which yields a precision that matches that 
proportion of the target segment in the dataset (see Section 2.2).  We 
considered chance-level recall as prediction rate of the target label 
(e.g., Lecture) for each segment classifier.  Using these values, we 
calculated an F1 baseline for chance prediction of the target 
segment, shown in Table 1. We define chance in this manner to 
emulate classification with the same prediction rate as our models 
on a dataset reflecting the same distribution as our data.   

The target F1 score reveals the efficacy of predicting the minority 
class labels, which correspond to each of our key instructional 
segments. For all segments, we were able to predict at levels well 
above our target F1 chance baseline. However, we were more 
successful predicting Question & Answer, Small Group Work, or 
Lecture compared to Procedures and Directions or Supervised 
Seatwork.   

Table 2 presents the confusion matrix for each binary classifier as a 
proportion of the total instances. We most readily correctly 
identified true cases of Question & Answer segments (72% of the 
time), compared to the target class of the other classifiers. We note 
that all five classifiers were able to identify their respective segment 
at levels well above chance, but do suffer from misclassifications. 
In particular, the classifiers had high false positive rates, in which, 
for example, a non-Seatwork segment was identified as a 
Supervised Seatwork segment. This too is likely a consequence of 
the frequency of occurrence of certain segment types for certain 
teachers. 

Table 2. Confusion matrices of each of the five classifiers. The 
column headers represent the predicted segment, while the 

row header denotes the actual segment. 

 Actual    Predicted 

Question & 
Answer 

 Q&A Other 

Q&A 0.72 0.28 

Other 0.44 0.56 
   

Procedures and 
Directions 

 Directions Other 

Directions 0.70 0.30 

Other 0.42 0.58 
   

Supervised 
Seatwork 

 Seatwork Other 

Seatwork 0.63 0.38 

Other 0.44 0.56 
   

Small Group 
Work 

 Group Other 

Group 0.67 0.34 

Other 0.45 0.55 
   

Lecture 

 Lecture Other 

Lecture 0.59 0.41 

Other 0.27 0.73 
 
The confusion matrices are generally symmetric, with the exception 
of the Lecture classifier. Here, it appears that we are more 
successful at detecting non-Lecture than the Lecture segments 
themselves. This might be because Lecture segments are much 
more variable as they pertain to the general subject matter of the 
day, topics unlikely to be visited in other class sessions. 
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Furthermore, Lecture segments may contain supplementary video 
or other aspects that add unique challenges to classify based solely 
on audio recordings.  

4.5 Comparison with Previous Work 
A direct comparison with previous work is not possible because our 
dataset, preprocessing steps, feature extraction, and classifiers 
differ substantially. Nevertheless, we discuss our work in the 
context of the previous two studies in this domain. On the surface, 
our Question & Answer segment results are comparable to [5], 
which considered only Question & Answer segments from a small 
set of three teachers, reporting an AU-ROC of 0.78. This study 
reported results from a logistic regression classifier, a classifier 
which we also considered in our preliminary experiments but 
discarded as it had a tendency to overfit to the dominant class label 
and did not scale well to larger sets of features. Furthermore, in our 
work, we considered Question & Answer and Discussion segments 
together, rendering it a harder problem while [5] simply discarded 
Discussion segments altogether.  

Wang et al. reported 84% accuracy across a limited set of three 
possible instructional segments [31]. As we reviewed in Section 
1.1, the authors re-used their training examples in their test set, 
albeit with testing the label given by the other human coder, 
achieving an accuracy of 84%. Since two coders had an 83% 
agreement in their annotations, this resulted in highly correlated 
training and test sets. In comparison, our approach used separate 
training and test sets validated independently of the teacher. The 
differences between our results and [31] underscore the need to 
validate classification models in a manner independent of the 
teacher or the class session in order to generalize to new teachers 
and class sessions.  

5. DISCUSSION 
We considered the task of automatically identifying instructional 
segments from live classrooms using only an audio recording of the 
teacher's speech. This is quite a challenging task as we are drawing 
from a single uninterrupted channel of classroom audio in order to 
make high-level predications on instructional activities at specific 
moments during the class session. Although our classification 
models are not perfect, we are able to detect five individual 
instructional segments well above chance levels. Despite the fact 
that the instructional content discussed in classrooms represents 
high-level discourse, our system did not have the benefit of an 
accurate text transcript or recordings of individual students. 
Instead, it used only low-level features derived solely from teacher 
audio.   

5.1 Contributions 
Our system fulfills our design goals of practicality, generalizability, 
and scalability. First, we described a non-invasive method of 
recording the teacher using a low-cost and portable microphone that 
does not interfere with the teacher’s regular teaching routine. All 
data processing tasks, including audio capture, automatic speech 
recognition, feature extraction, and classification can be performed 
on a standard personal laptop. By prioritizing a simple and 
affordable technical setup, we will more easily be able to facilitate 
practical deployment in classrooms. This is a significant advantage 
over the approach used in [31] which requires expensive and 
propriety recording equipment and analysis software.  

Second, we evaluated our system on the largest and most diverse 
dataset thus far considered for this task, covering multiple teachers, 
schools, and course subjects. We considered all class recordings, 
despite the potential absence of certain instructional segments in 

several class sessions. We also had to handle the difficulties of 
undesirable noise, such as the persistent heavy breathing of one 
teacher or distracting background noise from the classroom, in 
others.  Additionally, we focused on the identification of five key 
instructional segments, extending beyond previous attempts at 
automatic classification of instructional activities, which considered 
only a single activity [5] or a limited set of only three activities [31]. 
Of the five instructional segments considered in this work, Question 
& Answer segments are the most important component of dialogic 
instruction as certain types of questions and in-depth discussion 
sections correlate to increased student achievement [16, 22, 24]. 
Therefore, it is encouraging that we can more readily identify these 
Question & Answer segments, although further refinement is 
needed to reduce the false positive rate. 

Third, we studied the influence of three diverse features types for 
the detection of instructional segments. We considered features 
derived from natural language processing of ASR transcriptions and 
non-verbal acoustic features extracted from noisy classroom audio 
recordings. It is encouraging that the NLP features were successful 
in identifying certain segments, despite the fact that they are 
generated from ASR transcriptions, an imperfect process hindered 
by mumbled speech or ambient background noise.  

Most importantly, we built and validated our models in a teacher-
independent manner which increases confidence that our approach 
generalizes to new teachers, schools, or class sessions. We have 
found our results scale across the set of eleven teachers with no 
indication that our approach overfits to specific teachers.  

5.2 Limitations and Future Work 
Our study is not without limitations.  One limitation is that our data 
was collected from within a single U.S. state and does not capture 
larger geographic differences, such as regional accents and 
phrasing [13] or state-wide curriculum requirements that guide the 
teacher's lesson plans. We anticipate that different regional accents 
may not be a significant issue given the wide-spread use of ASR, 
but this requires empirical confirmation. We have also only tested 
our system in English language classrooms. Given the proliferation 
of ASR for many languages, we anticipate our approach will largely 
extend to other languages, provided an adaption be made to the 
natural language processing features to suit other languages. Lastly, 
we note that the differences between curricula across different 
states and countries may affect the distribution of certain 
instructional segments, a potential issue we will consider in the 
future. 

Although this work demonstrates encouraging progress towards the 
goal of automatic analysis of class instruction, significant 
refinement is necessary to improve the efficacy of our predictions. 
In particular, our classifier will likely benefit if given additional 
data apart from the teacher’s speech. Recording individual students 
is impractical with regards to both cost and privacy concerns. 
Presently, additional data collection is underway which includes a 
pressure zone microphone to capture general classroom activity. 
Although the additional microphone is still subjective to the same 
challenges as the teacher channel, such as classroom noise or 
imprecise speech transcriptions, this second channel of audio, 
coupled with the recording of the teacher, would allow modeling 
teacher-student interactions, potentially yielding stronger insight to 
the classroom activity in progress.  

We also considered only a single classification model (Naïve 
Bayes) to facilitate comparison of results across experiments. In 
further experiments, we will explore the use of different classifiers 
for each of the five segments, as different classifiers likely have 
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different strengths and weaknesses depending on the instructional 
segment at hand. Furthermore, as we continue to refine our 
approach and improve our results, we will explore combining the 
binary models into a multi-class approach to classification. 

Furthermore, we observed that we are better able to identify an 
instructional segment if it occurred frequently during the class 
session. There was, however, a tendency to overpredict when a 
segment did not occur in a classroom session. To address this 
limitation, we will explore models that consider the instructional 
segments in the larger context of the class session. For example, we 
will attempt to first predict if examples of the segment exist in a 
particular class session, before classifying the individual windowed 
segments. Although we validated our approach across teachers, we 
did not explicitly consider the order of the windowed instances 
within a class session. As future work, we will explore the use of 
temporal models, such as a hidden Markov models or conditional 
random fields, which can incorporate information that occurred 
earlier in the class session when making predictions. This approach 
enables the inclusion of additional contextual information when 
making predictions, a potentially important benefit for the present 
task.  

A major difficulty of our task stems from the imbalance of 
segments of interest across the entire dataset. In order to work 
towards the goal of achieving a deployable system, we must 
overcome the challenge of class label imbalance as it reflects the 
reality of real-world classes. The collection of additional classroom 
recording is ongoing and this will provide more examples of the 
various instructional segments and additional teachers.  

5.3 Concluding Remarks 
We took steps towards automated teacher modeling by identifying 
teachers’ instructional activities from audio data collected in live 
classrooms. The teacher model will be used to generate 
personalized formative feedback, which will afford reflection and 
improvement of their pedagogy, ultimately leading to increased 
student engagement and achievement. 
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