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Abstract. This chapter reviews our past and ongoing investigations into
conversational interaction during human tutoring and our attempts to
build intelligent tutoring systems (ITS) to simulate this interaction. We
have previously modeled the strategies, actions, and dialogue of novice
tutors in an ITS, called AutoTutor, with learning gains comparable to
novice tutors. There is evidence, however, that expert human tutors may
foster exceptional learning gains beyond those reported for some cate-
gories of human tutors. We have undertaken a rigorous, large scale study
of expert human tutors and are using these data to create Guru, an
expert ITS for high school biology. Based on our analyses, expert hu-
man tutoring has several distinctive features which differ from novice
human tutoring. These distinctive features have implications for the de-
velopment of an expert ITS, and we briefly describe how these are being
addressed in Guru.

1 Introduction

The empirical evidence that one-to-one human tutoring is extremely effective
compared to classroom environments is well known [1-4]. The effectiveness of
one-to-one tutoring raises the question of what makes tutoring so powerful.
Three different hypotheses, known as the tutor-centered, student-centered, and
interaction hypotheses, have been proposed to answer this question [5,6]. The
tutor-centered hypothesis claims that effective tutoring stems primarily from
the actions of the tutor, specifically, the tutor’s pedagogical moves are tailored
to a given student. In contrast, the student-centered hypothesis places the em-
phasis on the student, highlighting that students are active participants in the
construction of their own knowledge rather than being mere information recepta-
cles. Finally, the interaction hypothesis predicts that the effectiveness of tutoring
draws from both tutor and student behavior and their coordination with each
other. Interaction has also been emphasized in the collaborative learning litera-
ture in which some forms of group learning outperform individual learning [7, 8].
Equally related are collaborative forms of instruction that are dialogue-centric,
such as reciprocal teaching [9].

Interest in the interaction hypothesis is growing [5,6]. However, the inter-
action hypothesis has long-standing roots in the tutoring literature. An early



meta-analysis on a large sample of studies compared human-to-human tutoring
with classroom environments and suitable comparison conditions [2]. The vast
majority of the tutors in these studies were untrained in tutoring skills and had
moderate domain knowledge; they were peer tutors, cross-age tutors, or para-
professionals, but rarely accomplished professionals. These “unaccomplished”
human tutors enhanced learning with an effect size of a .4 standard deviation
unit (sigma), or approximately a half letter grade. As one might expect, unskilled
human tutors are not prone to implement sophisticated tutoring strategies that
have been proposed in the fields of education, the learning sciences, and devel-
opers of ITSs (Graesser et al., 1995; Graesser, D’Mello, & Person, 2009; Person
et al., 1995). Instead the learning gains from unaccomplished human tutors il-
lustrate the power of dialogue-based interaction for learning.

This chapter reviews our work on conversational interaction during human
tutoring and our attempts to build intelligent tutoring systems (ITS) to simu-
late this interaction. To date, the bulk of our research addresses the strategies,
actions, and dialogue of novice tutors [4,10,11]. We have implemented novice
tutoring in an ITS, called AutoTutor, with learning gains comparable to novice
tutors [12, 13]. More recently, we have expanded our investigation to highly ac-
complished expert human tutors [14,15]. Our shift in emphasis is driven by a
desire to understand what makes accomplished expert human tutors produce
exceptional learning gains, as has been previously reported [1]. We have under-
taken a rigorous, large scale study of accomplished human tutors, and we are
using these data to create Guru, an expert ITS for high school biology. In the
following sections we further elaborate this contrast between novice and expert,
both in terms of human tutoring and the ITS components required to mimic
interaction with novice and expert human tutors.

2 Novice human tutoring

Our initial research on conversational interaction during tutoring focused on
novice human tutors. While it may seem counterintuitive to focus on novice
human tutors when there is evidence that expert human tutors produce superior
learning gains, there are several outstanding reasons why it is important to
understand novice human tutoring. Perhaps the primary reason to focus on
novice human tutoring is that the bulk of human tutors are novice tutors, e.g.
paraprofessionals, cross-age tutors, or peers. Expertise is scarce in general, and
tutoring is no exception to this rule. A secondary reason to focus on novice
human tutors is the plausible assumption that novice human tutors generate
a less sophisticated conversational interaction than expert human tutors. By
first studying novice tutors, we make use of a divide-and-conquer approach: an
understanding of novice human tutoring should make it easier to understand the
complexity of expert human tutoring. Finally, the relative abundance of novice
human tutors facilitates the creation of larger representative samples than has
often been impractical with expert human tutors. We return to this issue when
we discuss expert human tutoring in a later section.



Two samples of novice tutoring were collected and analyzed [4, 10]. The first
sample consisted of tutoring sessions on undergraduate research methods, the
Research Methods Corpus (RMC). The 3 tutors in the RMC were graduate
students who had never tutored for research methods, thus they were truly
novice tutors in this domain. The 27 students receiving tutoring participated in
two 1-hour sessions each with different tutors, for a total of 54 sessions. Each
session was recorded; however, due to video quality, only 44 sessions could be
transcribed. The second sample of novice tutoring was in the domain of 7th
grade algebra, the Algebra Corpus (AC). The 10 tutors who participated were
high school students with an average 9 hours of prior experience in tutoring.
The 13 students receiving tutoring participated in 1-hour sessions for a total of
22 sessions. Thus in total the RMC and AC consist of 76 hours of tutoring for
40 students and 13 tutors.

Multiple codings schemes have been developed to analyze the RMC and AC
along different dimensions including feedback, tutor examples, Gricean Maxims,
student errors, and student questions [4,10,16,17]. Tables 1 and 2 present the
primary dialogue moves used by students and tutors across these analyses.

Table 1. Novice Student Dialogue Moves

Move Category Description
Contribution Quality
Complete Student provides complete answer to tutor question.
Partial Student provides partial answer to tutor question.
Vague Student provides vague answer to tutor question.
Error-ridden Student provides error-ridden answer to tutor question.
No Answer Student fails to provide any answer to tutor question.
Asks Question
Makes request Student makes request unrelated to the problem/example.
Counter- clarification Student needs clarification on tutor’s previous statement.
Problem-related Student asks question directly related to the
problem/example.
Other Any question not assigned to one of the other
three question categories.
Misconception Student states his or her own misconception.
Reminding Example Student comments on a similar example.
Meta-comment Student comments on own ability or attribute of problem.
Acknowledgement Student acknowledges tutor’s contribution (e.g., Uh-huh).
Gripes Student complains.
Think aloud Student thinks aloud.
Nonverbal Student makes a nonverbal response (e.g., laughs).
Draw Student draws on board.
Other Any speech act not assigned to one of the other student

categories.




Table 2. Novice Tutor Dialogue Moves

Move Category

Description

Additional example
Easier

Difficult
Equal

Asks question
Error-repair

Directed- Activity

Leading

Counter-clarification

Pump
Assessment
Global

Other

Feedback
Positive
Negative
Neutral
Immediate
Delayed
Reminding Example
Specific Component

General Level

Hint

Splice

Elaborates

Answers

Rearticulates
Solution
Representation

Affective
Own ability
Student ability
Problem
General

Gripes

Directive

Draw

Nonverbal

Other

Tutor provides student an easier example than the previous
example.

Tutor provides a more difficult example than the previous
example.

Tutor provides an example of equal difficulty with the
previous example.

Tutor asks question specifically related to student error.
Tutor asks question in order to redirect student’s activity.
Tutor asks question to expose student’s misconception.
Tutor requests clarification of student’s previous statement.
Tutor pumps student for additional information.

Tutor assesses student’s knowledge about a particular topic.
Tutor globally assesses student’s knowledge (e.g., “Do you
understand?”)

Any question not assigned to one of the other question
categories.

Tutor gives positive feedback to student.

Tutors gives negative feedback to student.

Tutor gives neutral feedback to student.

Tutor provides immediate feedback for a student error.
Tutor provides delayed feedback for a student error.
Tutor comments on a similar example.

Tutor focuses on specific component of current
problem/example.

Tutor discusses current example in more general terms.
Tutor provides the student with a hint.

Tutor splices in the correct answer.

Tutor elaborates current problem/example.

Tutor answers student question.

Tutor rearticulates the current problem’s solution.
Tutor rearticulates the problem’s representation.

Tutor comments on his or her own ability.

Tutor comments on student’s ability.

Tutor comments on the difficulty of the problem/example.
Tutor makes general empathetic comment.

Tutor complains.

Tutor tells the student what to do.

Tutor draws on the board.

Tutor makes some type of nonverbal response (e.g., laughs).
Any speech act not assigned to one of the other tutor
categories.




Using the coding scheme in Tables 1 and 2, Graesser and Person’s analyses
of the RMC and AC uncovered three frequent dialogue structures [4, 10, 18].
These same structures have featured prominently in the work of other researchers
conducting fine-grained analyses of tutoring [5, 19, 6, 20, 21]. These three dialogue
structures are:

1. 5-step Tutoring Frame
2. Expectation and Misconception Tailored (EMT) dialogue
3. Conversational Turn Management (which includes tutor pedagogical modes)

These three structures are multiply embedded: 3 is embedded in 2, which in
turn is embedded in 1. There are two common features across all three of these
structures. The first is that the tutor, rather than the student, tends to initiate
and guide the conversational interaction. The second common feature is that all
three of these structures exist at the level of the problem, rather than across
larger spans of the tutorial discourse.

2.1 5-Step Tutoring Frame

The 5-Step Tutoring Frame begins once a problem has been introduced. As
indicated by the name, the following five steps are enacted in order:

1. TUTOR asks a difficult question or presents a problem.

STUDENT gives an initial answer.

TUTOR gives short feedback on the quality of the answer.

TUTOR and STUDENT have a multi-turn dialogue to improve the answer.
TUTOR assesses whether the student understands the correct answer.

G W

This 5-Step Tutoring Frame involves a great deal of conversational interaction.
The structure of the 5-Step Tutoring Frame fosters both collaborative discussion
and joint action as the tutor works with the student to iteratively construct a
better answer.

The 5-Step Tutoring Frame can be better understood by contrasting it with
the Initiate-Respond-Feedback (IRF) sequence typically used in classrooms [22].
The first three steps occur in classroom IRF, but the questions are easier short-
answer questions. The classroom IRF sequence consists of the teacher initiating
a question, the student giving a short-answer response, and the teacher giving a
positive or negative feedback of the response. For example, consider the following
IRF example for Newtonian physics.

TEACHER: According to Newton’s second law, force equals mass times
what?

STUDENT: acceleration

TEACHER: Right, mass times acceleration. Or

STUDENT: velocity

TEACHER: Wrong, it’s not velocity, it is acceleration.

As the above example illustrates, IRF does not facilitate conversational in-
teraction. The 5-Step Tutoring Frame goes beyond IRF by posing more difficult
questions that stimulate the collaborative interactions found in step 4.



2.2 Expectation and Misconception Tailored (EMT) dialogue

Novice human tutors maintain a basic representation of the correct answer to
a problem (expectations) as well as some misconceptions that may arise. For
example, expectations E1 and E2 and misconceptions M1 and M2 are relevant
to the example physics problem below.

PHYSICS QUESTION: If a lightweight car and a massive truck have a head-
on collision, upon which vehicle is the impact force greater? Which vehicle
undergoes the greater change in its motion, and why?

E1. The magnitudes of the forces exerted by A and B on each other are
equal.

E2. If A exerts a force on B, then B exerts a force on A in the opposite
direction.

M1: A lighter/smaller object exerts no force on a heavier/larger object.
M2: Heavier objects accelerate faster for the same force than lighter objects

Expectations and misconceptions form a simple domain model which novice
tutors use to select dialogue moves. Expectations are akin to the expert model
of model tracing tutors, and misconceptions are likewise analogous to buggy
libraries in model tracing tutors.

Novice tutors select dialogue moves based on the status of the current prob-
lem’s expectations and misconceptions. Hints and prompts direct the student
to articulate missing content words, phrases, and propositions. For example, a
hint for expectation E1 might be “What about the forces exerted by the vehicles
on each other?”, which would ideally elicit the answer “The magnitudes of the
forces are equal.” A corresponding prompt to elicit “equal” would be “What
are the magnitudes of the forces of the two vehicles on each other?” As the
conversational interaction of the tutoring session unfolds, the student articu-
lates the tutor’s expectations in piecemeal (as in the examples given) or directly
(for a high ability student). Novice tutors also have some awareness of common
misconceptions associated with a problem. Thus when a student articulates a
misconception, the tutor identifies the misconception and corrects it.

2.3 Conversational Turn Management

The preponderance of conversational interaction is tutor-led. Student led dia-
logue can occur when students ask questions, but it is well documented that
students rarely ask questions, even in tutoring environments [4,18]. Tutor-led
turns usually consist of three steps. The first step gives positive, neutral, or neg-
ative feedback on the student’s last answer. The second step advances progress
through the current problem, based on the expectations and misconceptions the
student has already covered. Thus the second step may be instantiated with
prompts for specific information, hints, assertions with correct information, or
corrections of misconceptions. The third step signals the student that it is their
turn to respond, i.e. via a question, rising intonation, or a gesture.



Novice human tutors use the 5-Step Tutoring Frame, EMT dialogue, and
conversational turn management to present challenging problems or questions
to the student, adaptively scaffold good answers through collaborative interac-
tions, provide feedback when students express erroneous information, and an-
swer occasional student questions. What is absent are sophisticated pedagogical
strategies. According to our systematic analyses of the tutoring process [10, 23,
17], novice human tutoring is not characterized by sophisticated tutoring strate-
gies that have been proposed in the fields of education, the learning sciences,
and developers of ITS [24]. In particular, novice tutors rarely engage in peda-
gogical techniques such as bona fide Socratic tutoring strategies [25], modeling-
scaffolding-fading [26], Reciprocal Teaching [9], frontier learning [27], building
on prerequisites [28], or diagnosis/remediation of deep misconceptions [29]. This
is perhaps unsurprising because these strategies are complex and were not dis-
covered for centuries.

3 AutoTutor

AutoTutor simulates a novice human tutor by holding a conversation with the
learner in natural language. The pedagogical framework of AutoTutor was in-
spired by three bodies of theoretical, empirical, and applied research. These in-
clude explanation-based constructivist theories of learning [30, 5, 31, 32], intelli-
gent tutoring systems that adaptively respond to student knowledge [33, 34], and
empirical research that has documented the collaborative constructive activities
that routinely occur during human tutoring [5, 35, 10, 36,21]. The pedagogical
strategies of AutoTutor are modeled on the novice human tutoring strategies de-
scribed in Section 2, including the 5-Step Tutoring Frame, EMT dialogue, and
conversational turn management.

AutoTutor implements the 5-Step Tutoring Frame by presenting a series of
challenging questions or problems that require approximately a paragraph of
information to answer correctly. An example question in conceptual physics is,
“When a car without headrests on the seats is struck from behind, the passengers
often suffer neck injuries. Why do passengers get neck injuries in this situation?”
Although a perfect answer to this question is approximately 3-7 sentences in
length, the initial answers by actual human learners are typically only 1 word to
2 sentences in length. The conversational interaction afforded by tutorial dialogue
is particularly helpful when the student’s answer is incomplete. AutoTutor uses
the 5-Step Tutoring Frame to assist the learner in the evolution of an improved
answer by drawing out more of the learner’s knowledge that is relevant to the
answer. The dialogue between AutoTutor and the learner typically lasts 50-200
turns (i.e., the learner expresses something, then the tutor, then the learner, and
so on), which is on par with the interactivity in human tutoring.

AutoTutor uses expectations and misconceptions as an integral part of its
domain model, and selects dialogue moves that elicit expectations and address
misconceptions. More specifically, the goal of AutoTutor is to elicit the correct
answer from the student. Since the correct answer is a paragraph of information,



this goal reduces to eliciting each sentence, an expectation, in the correct an-
swer paragraph. In order to elicit each expectation, AutoTutor generates tutorial
dialogue moves including pumps, hints, prompts, and assertions:

Pumps. AutoTutor pumps the student for more information during the early
stages of answering a particular question (or solving a problem). The pump
signals the student to keep talking, for example using positive feedback (e.g.,
right, yeah, dramatic head nod), neutral back channel feedback (uh-huh,
okay, subtle head nod), and explicit requests for more information (What
else?, Tell me more). By encouraging the student to say more, pumping helps
expose the student’s knowledge while giving the student an opportunity to
construct knowledge by herself.

Hints. When the student is having problems answering a question or solving a
problem, the tutor gives hints by presenting a fact, asking a leading question,
or reframing the problem. Hints cue the student to some relevant feature
of the problem without revealing the role of that feature in answering the
problem.

Prompts. AutoTutor supplies the student with a discourse context and prompts
them to fill in a missing word or phrase. Prompting is a scaffolding device for
students who are reluctant to supply information. Students are expected to
supply more content and more difficult content as they progress in learning
the domain knowledge.

Assertions. AutoTutor gives a summary to an expectation. This summary
serves the function of succinctly codifying a lengthy, multi-turn, collaborative
exchange when an expectation is covered or a problem step is completed.

It is worth noting the continuum of information provided by the tutor in
different types of moves. Moves at the beginning of the list, i.e. pumps and
hints, provide less information to the student than moves towards the end of
the list, i.e. prompts and assertions. By only giving more information when the
learner is floundering, AutoTutor promotes active construction of knowledge [10,
5]. Analysis of AutoTutor experiments shows that deeper questions, i.e. pumps
and hints, promote more learning than shallow dialogue moves such as prompts
and assertions [37].

AutoTutor assesses the student’s answers to these dialogue moves using La-
tent Semantic Analysis (LSA), a vector space method capable of representing
world knowledge [38—41]. In LSA, a word is represented by a fixed size vector of
real numbers. A sentence or document is also represented by a fixed size vector,
made by summing component word vectors. Words, sentences, and documents
can all be compared to each other by comparing their vectors. AutoTutor uses
LSA to compare the student’s answer to the expectations by comparing the LSA
vector of the student’s answer to the vectors of the expectations. LSA vectors
that are identical have a cosine of 1, but AutoTutor uses a lower threshold,
e.g. 0.7, to allow the student some flexibility in their answer. In other words,
LSA allows student answers with the same meaning, but different wording, to
be recognized as correct answers.



AutoTutor uses conversational turn management to maintain a coherent con-
versational interaction with the student. The primary mechanisms in AutoTutor
for conversational turn management are AutoTutor’s speech act classifier and di-
alogue manager. Before AutoTutor responds to a student, the student’s utterance
is analyzed to determine its speech act [42]. If a student asks an information-
seeking question, AutoTutor launches a subdialogue to answer that question.
This subdialogue can consist of multiple rounds of clarification, and even recur-
sively nested subdialogues for more detailed questions [43]. If the speech act is
an answer or verification question, AutoTutor gives feedback based on the cosine
between the student’s LSA vector and the current expectation.

In the second and third steps of conversational turn management, AutoTutor
selects and delivers a dialogue move. The specific dialogue move is selected based
on the current context of the tutoring session, including the problem that the
student is on, the current expectation, and the last dialogue move type gener-
ated (e.g. hint). AutoTutor loads this context into its state table, an information
state [44], and then processes this state table through a dialogue manager [43].
The dialogue manager is defined by a formal language for describing dialogues
together with a corresponding interpreter to execute dialogues in this language.
This approach has made it much easier to create new tutorial dialogue patterns
than was possible with previous finite-state approaches [45,46]. The dialogue
manager’s interpreter finds and returns a dialogue pattern, which is a plan that
matches the current context. Recently this has been reimplemented using Pro-
log in GnuTutor, an open-source approximation of AutoTutor, which allows for
more sophisticated backtracking [47]. The dialogue plan returned by the dialogue
manager ends with a question, has a gesture, or has rising intonation to indicate
to the student that the tutor expects them to respond.

The learning gains of AutoTutor have been evaluated in over 20 experiments
conducted during the last 12 years. Assessments of AutoTutor on learning gains
have shown effect sizes of approximately 0.8 standard deviation units in the areas
of computer literacy [12] and Newtonian physics [13]. AutoTutor’s learning gains
have varied between 0 and 2.1 sigma (a mean of 0.8), depending on the learning
performance measure, the comparison condition, the subject matter, and the
version of AutoTutor.

4 Expert human tutoring

Most human tutoring studies that have been reported in peer-reviewed sources
have primarily included untrained or “typical” tutors [2]. By comparison, expert
tutoring studies are scarce, and such studies have included only a handful of
expert tutors. This section reviews the expert tutoring studies most frequently
cited in the literature and notes some problems that have contributed to our
lack of expert tutoring knowledge.

First, several well-known studies do not mention the number of expert tutors
included in the analyses [48, 35,49, 50]. Second, although some studies report five
or six expert tutors [51,45, 52, 53, 13], many included only one or two experts [21,



54-57]. Third, some of these studies have overlapping expert tutors. For example,
the tutors included in [45], [57], and [13] are the same five tutors. Fourth, not all
studies on expert human tutoring investigate the same phenomena. A number
of studies have focused on the motivational aspects of tutors instead of the
cognitive and pedagogical features that contribute to student learning (e.g., the
studies by Mark Lepper and colleagues). A fifth problem with these studies is
that the credentials of the expert tutors are inconsistent. Some studies define
expert tutors as Ph.D.s with extensive teaching or tutoring experience [54, 55,
45,57], but other studies define expert tutors as graduate students working in
tutoring centers [35]. Taken together, these problems raise uncertainty as to
whether the findings generalize to all expert tutors. A more detailed analysis
of these problems reveals two enduring themes. First, many studies suffer from
small or unknown sample sizes. Secondly, it is difficult to aggregate findings
across studies because of shared tutors, differing research goals, and inconsistent
definitions of expertise.

To address these issues, we recently undertook a rigorous, large scale study
of accomplished, expert human tutors. Our approach mirrors our previous study
of novice human tutoring by collecting observations of naturalistic one-to-one
tutoring. Twelve expert math and science tutors were recruited to participate in
the project. The expert tutors were recommended by academic support person-
nel from public and private schools in a large urban school district. All of the
tutors have long-standing relationships with the academic support offices that
recommend them to parents and students. The criteria for being an expert tutor
in our project are as follows:

Have a minimum of five years of one-to-one tutoring experience (most of the
tutors in our study have 10+ years of tutoring experience)

Have a secondary teaching license

Have a degree in the subject that they tutor

Have an outstanding reputation as a private tutor

Have an effective track record (i.e., students who work with these tutors show
marked improvement in the subject areas for which they receive tutoring)

All of the students in our study were having difficulty in a science or math
course and were either recommended for tutoring by school personnel or sought
professional tutoring help.

We created our expert tutoring corpus by observing our expert tutors in one-
on-one tutoring sessions. Fifty one-hour tutoring sessions were videotaped and
transcribed. All of the videotapes were transcribed according to strict transcrip-
tion guidelines and were verified for accuracy. To capture the complexity of what
transpires during a tutoring interaction, three coding schemes were developed
to classify every tutor and student dialogue move in the 50 hours of tutoring.
In the analyses we conducted, a dialogue move was either a speech act (e.g., a
tutor hint), an action (e.g., student reads aloud), or a qualitative contribution
made by a student (e.g., partial or vague answer). Multiple dialogue moves could
occur within one conversational turn.



Table 3. Tutor Motivational Moves

Move Category Example

Attribution Acknowledgment  that’s easy

Conversational Ok alrighty

General Motivational Statement cause you're such a good student I just enjoy ...
Humor so you’re going to have kids and you go “oh I ...
Negative Feedback no no no no

Negative Feedback Elaborated actually no you’re gonna have some ...

Neutral Feedback not quite

Neutral Feedback Elaborated  mm you're thinking of vertical vertical angles ...
Positive Feedback very good alright

Positive Feedback Elaborated  very good because everything is on top
Repetition negative 2

Solidarity Statement let’s do it

Table 4. Tutor Pedagogical Moves

Move Category Example

Counter Example not multiply we’ll add in the area of the bases ...
Comprehension Gauging Question you see what I’'m saying
Direct Instruction/Explanation  so that’s your lateral area

Example so as a male you will undergo meiosis and your ...
Forced Choice so are we going bigger or smaller

Hint but now we’re not gonna add this many dots ...
New Problem let’s look at this example here it’s called ...
Other does he give you a time limit

Paraphrase you take out an r squared and you’d have 4 ...
Provide Correct Answer first outer inner last

Preview we’re going to talk about how atoms ions ...
Prompt can we simplify the radical of 9 is simply

Pump and then what do we do

Simplified Problem what inside the cell would have an electrical ...
Summary so that’s all there is to it so you got a circular ...

Two coding schemes were used to classify the tutor dialogue moves, the Tutor
Pedagogical Scaffolding scheme and the Tutor Motivational Dialogue scheme.
The Pedagogical Scaffolding scheme included 14 categories and was inspired by
previous tutoring research on pedagogical strategies and dialogue moves [10, 58].
The Tutor Motivational Dialogue scheme included 13 categories that were either
reported previously in the literature or were extrapolated from the INSPIRE
model [50]. Each tutor dialogue move was classified as either pedagogical or
motivational. The Tutor Motivational and Pedagogical Schemes are presented
in Table 3 and Table 4.

A 16 category coding scheme was also developed to classify all student di-
alogue moves. Some of the student move categories captured the qualitative
nature of a student dialogue move (e.g., Correct Answer, Partially Correct An-
swer, Error-ridden Answer), whereas others were used to classify types of ques-



Table 5. Student Dialogue Moves

Move Category Example

Acknowledgment yes, ma’am

Common Ground Question the parasites?

Correct Answer 6 times 54

Error Ridden Answer multiply

Gripe I might as well not pay attention
Knowledge Deficit Question well, what’s a skeleton?
Metacomment I don’t know what I’m doing, hold on
Misconception I thought you added two to it

No Answer it will be, oh shoot it will be

Other she didn’t do that

Partial Answer so I guess eliminate those 2

Read Aloud first class levers are the most common type a pire of

Social Coordination Action afternoon sunday? want to do it like sunday afternoon?
Student Works Silently uh

Think Aloud to the power of, no, x plus 1

Vague Answer cause you, yeah times

tions, conversational acknowledgments, and student actions (e.g., reading aloud
or solving a problem). The Student Dialogue Move Scheme is presented in Ta-
ble 5. Four trained judges coded the 50 transcripts on the three dialogue move
schemes. Cohen’s Kappas were computed to determine the reliability of their
judgments. The Kappa scores were .96 for the Tutor Motivational Scheme, .88
for the Tutor Pedagogical Scheme, and .88 for the Student Move Scheme. Ap-
proximately 47,000 dialogue moves were coded.

In addition to these dialogue move coding schemes, we also developed a cod-
ing scheme for larger units of the tutoring session. We call these units modes
[14]. Two trained judges coded the 50 transcripts and found eight modes, in-
cluding Introduction, Lecture, Highlighting, Modeling, Scaffolding, Fading, Off-
Topic, and Conclusion, with Kappa above .80 for each mode. Each mode can be
characterized by a specific kind of interaction:

Introduction. Expert tutoring sessions usually begin with an Introduction that
contains greetings and establishes an agenda for the rest of the session.
Lecture. Approximately 20% of the sessions consist of direct instruction. We
call these modes Lecture, but they are usually highly customized, just-in-
time, and interactive, unlike traditional classroom lecture.

Highlighting. When a student encounters difficulty while problem solving,
Highlighting draws attention to a problem solving step.

Modeling. In this mode, the tutor works a problem while the student watches.

Scaffolding. Expert human tutoring is dominated by Scaffolding, in which the
tutor and student solve a problem together. Roughly 50% of all turns take
place in this mode.

Fading. As the inverse to Modeling, the student predominantly solves a problem
while the tutor watches in Fading.



Off-Topic. Non-tutoring related conversation, e.g. humor, infrequently occurs.
Conclusion. Expert tutoring sessions usually end in a characteristic fashion,
similarly to how Introduction begins the session.

An individual mode can span dozens of turns, and so represents a major unit
in the structure of a tutoring session. However, not all modes are equally preva-
lent or contain comparable numbers of turns. Approximately 70% of all turns
are contained within Lecture and Scaffolding modes, with the remaining turns
roughly divided amongst the remaining modes [14].

We are currently analyzing these 50 hours of expert human tutoring data,
which we call the expert human tutoring corpus (EHTC). Our goal is to explore
whether there are similar structures that we have found for novice tutoring, i.e.
the 5-Step Tutoring Frame, EMT dialogue, and conversational turn management
described in Section 2. However, there may be characteristics of expert human
tutoring that are very different than those of novice human tutoring protocols.
Although our analyses are still underway, we believe that expert tutors are dif-
ferent from novice tutors in at least six different ways [59-61]. It is important to
qualify these claims about expert tutors because with the exception of [61], there
was never a systematic comparison of tutors with different expertise in any given
study. Instead, the relative frequencies of tutor strategies and discourse moves
were computed in the EHTC and compared with the relative frequencies of the
same theoretical categories in published studies with unskilled tutors. At the
same time, however, there is little evidence of EMT dialogue in the EHTC, and
the patterns of dialogue are more complex than the typical instantiation of the
5-Step Tutoring Frame.

1. Expert tutors form more accurate student models that non-expert tutors.
This is evidenced in the question asking analyses that we performed. Expert
tutors ask proportionately more low specificity questions (e.g., So?) and more
common ground questions (e.g., So, I use the Pythagorean Theorem?) than
tutors and students in non-expert sessions. We interpret these findings to
mean that expert tutors are more attuned to the needs of their students
and have established considerable common ground. If this wasn’t the case,
low specificity questions (e.g., So?) would result in conversation breakdowns.
We also found that students being tutored by experts ask fewer knowledge
deficit questions (e.g., What do the ribosomes do?) than students working
with non-expert tutors, indicating that knowledge deficit questions are less
necessary when participants have established a high level of common ground.

2. Expert tutors are more dynamic in their instruction and do not rely on cur-
riculum scripts. Experts typically begin the tutoring sessions by figuring out
the topics/problems that students are having difficulty with and by asking
questions about the students’ performance on quizzes, homework, and ex-
ams. After this data collection phase, the tutor decides where to begin the
session and what material will be covered. Expert tutors do not begin a ses-
sion with any pre-planned teaching agenda, but rather base their instruction
on students’ particular needs at the time of the tutoring session.



3. Expert tutors give more discriminating feedback than non-expert tutors.
Non-experts are just as likely to give positive feedback to wrong answers as
negative feedback [11], but this is not true of expert tutors.

4. Expert tutors primarily rely on just-in-time direct instruction and evaluative
feedback when responding to student dialog moves.

5. Expert tutors are task-oriented, direct, and do not appear to adhere to Lep-
per INSPIRE motivational model.

6. Particular tutoring modes (defined by tutor dialogue move frequencies and
patterns) are evident in expert tutoring, including Introduction, Lecture,
Highlighting, Modeling, Scaffolding, Fading, Off-Topic, and Conclusion.

We have recently used data mining techniques to discover significant pat-
terns of dialogue moves in the EHTC [15]. Our basic approach is to consider
two-step transitions, i.e. move to move, that significantly diverged from chance
and whose effect sizes were greater than the median effect size. So far our analy-
ses have focused on Lecture. In Lecture, only 34 transitions out of 1869 (43 x 43)
are significant with effect sizes above the median. A visual inspection of these
transitions revealed four meaningful clusters. In the first cluster, the information
transmission cluster, the tutor mostly engages in direct instruction and only su-
perficially monitors student attention and understanding. In the second cluster,
the information elicitation cluster, the tutor elicits information from the student
using direct questioning, e.g. forced choice, prompts, pumps, etc., the student
tries to answer, and the tutor gives feedback on the student’s answer. The in-
formation elicitation cluster is the Lecture cluster most like the IRF and 5-Step
Tutoring Frame described in Section 2. The third cluster is the off-topic cluster,
e.g. humor, consisting of just a few moves as opposed to the Off-Topic mode.
The fourth and final cluster in Lecture is the questioning cluster that handles
student-asked common ground questions and knowledge deficit questions. Each
of these four clusters can be viewed as a subgraph of the larger Lecture graph
or viewed as a subdialogue nested in the larger Lecture dialogue.

Our analyses of the EHTC have revealed a richer structure than has previ-
ously been reported for novice tutoring, though again, we stress that this might
be confounded by the lack of novice tutors in our sample. The behavior of novice
tutors, as described in Section 2, aligns fairly well with the distinction of inner
and outer loop in the behavior of ITS [62]. According to the inner/outer loop
distinction, problem selection happens in the outer loop, and the actual working
of the problem, step by step, happens in the inner loop. Under this analysis, the
three features of novice tutoring described in Section 2 align quite well with the
inner loop. The 5-Step Tutoring Frame provides an overall dialogue structure for
the inner loop, with step 4 accounting for much of the individual steps, or expec-
tations, in the problem. EMT dialogue contributes by structuring the content
within step 4. Finally, the conversational turn management further elaborates
step 4. As stated in Section 2, these three structures are multiply embedded.

However, the multiple levels of structure found in our analysis of the EHTC,
while embedded, are considerably more complex. Transition probabilities be-
tween modes indicate that sessions typically shift from Introduction to Lecture



to Scaffolding. Because only some modes introduce problems, e.g. Scaffolding,
mode transitions are a step above the outer loop of problem selection. Inner
loops occur in clusters within modes, such as the information elicitation cluster
in Lecture. Finally, there are the dialogue moves themselves. In contrast to the
more straightforward multiple embedding of the 5-Step Tutoring Frame, EMT
dialogue, and conversational turn management, the EHTC corpus is revealing
a complex embedding in which many clusters exist in a single mode, and many
dialogue moves exist within each cluster. In other words, the EHTC is revealing
a web of embedded structure in expert human tutoring, as opposed to the simple
nesting found in novice human tutoring.

5 Guru

Guru, like AutoTutor, is designed to simulate a human tutor by holding a conver-
sation with the learner in natural language. However, Guru is design to simulate
an expert human tutor rather than a novice human tutor. The characteristics
of expert human tutors described in Section 4 are informative when considering
the design of Guru, and how it should differ from AutoTutor.

First and foremost, our analyses revealed that expert tutors do not use cur-
riculum scripts. However, curriculum scripts, are a central element of AutoTutor.
They contain all the EMT dialogue for a problem as well as the expectations
which are used to track the student’s progress and understanding. If curricu-
lum scripts and EMT dialogue are not characteristic of expert human tutoring,
then Guru requires a new way of tracking student understanding and organizing
knowledge about the domain.

Second, in terms of dialogue structure, expert tutors rely a great deal on eval-
uative feedback and just-in-time direct instruction. Contrast this to the hints,
prompts, and elaborations that constitute the bulk of AutoTutor’s dialogue.
Guru cannot soley rely on hints, prompts, and elaborations but rather must
incorporate tutor dialogue moves into a new model for just-in-time direct in-
struction.

Third, experts are precise with their feedback. In AutoTutor, feedback is
calculated by comparing the student’s responses with the expectations from the
curriculum script. Again, expert tutors do not appear to use such a script. Fur-
thermore, the traditional way of comparing student answers with expectations
in AutoTutor, LSA [12,13,43], is relatively imprecise: to LSA, “do you want to
drive me” and “do you want me to drive” mean the same thing. To model the
precise feedback of expert human tutors, it is necessary to incorporate a more
sensitive technique than LSA.

Fourth, expert tutors maintain highly accurate student models. In AutoTu-
tor, the student model is simply the set of LSA comparisons of the student’s
input to each expectation in the curriculum script. Not only do expert tutors
not use curriculum scripts, but LSA also doesn’t have the precision to match an
expert tutor. Therefore Guru should apply a different methodology for student
modeling.



Fifth, expert tutors use a variety of tutoring modes and clusters within modes
that have no clear correlates in AutoTutor. Contrasted with the linear hint-
prompt-assertion cycle used in AutoTutor, the expert tutoring modes are both
more numerous and more complex. Fortunately, the dialogue management used
in AutoTutor is extremely powerful [18], so a new approach to dialogue manage-
ment per se for Guru is not required.

In summary, Guru needs a new way to model the domain, model the student,
interpret student utterances, and generate direct instruction. We are working on
a unified approach to all of these tasks, which is based on a single knowledge
representation. Using a single knowledge representation for multiple purposes
like these is not uncommon in an ITS. For example, overlay student models
typically assume a domain decomposition in which chunks of content can be
marked as understood by the student, rather like checking items off a list. An
overlay student model is so called because it lays over the domain model in a
rather transparent way, i.e. each element of the domain model is on the checklist
for the overlay student model.

Clearly an overlay student model first requires a domain model. In the same
way, interpretation of student input and the generation of direct instruction can
also be yoked to a domain model. However, the creation of a domain model is
sufficiently challenging to require special authoring tools and many man-hours to
develop [63-65]. Thus for Guru we have been particularly interested in unsuper-
vised and semi-supervised knowledge representation techniques that can extract
semantic representations from raw text. Although we still find LSA useful for
some tasks, we have been developing a new technique for concept map extrac-
tion, which we believe holds promise for domain modeling, student modeling,
interpretation of student utterances, and generation of direct instruction.

5.1 Concept map extraction

The term “concept map” has become largely associated with an educational
practice in which students create a graph representation of ideas and the links
between them [66]. However, similar notions to concept maps have been used in
the education, artificial intelligence, and psychological communities for decades,
and as a result there are dozens of different definitions of concept map [67].
Generally speaking, a concept map consists of a set of nodes (concepts) and edges
(relations) describing a core concept or answering a core question [66]. We call a
pair of nodes connected by an edge a triple because it consists of three elements:
a start node, an edge relation, and an end node. Thus in general, relationships
in concept maps are binary. This prevents or obfuscates the expression of some
relationships such as a verb with three arguments, unless additional constraints
are adopted which can convert a concept map into a first order logic [68, 69].
Our unique concept map definition is a synthesis of previous work in both
the psychology and education literatures [70,71,67]. The education literature,
particularly relevant from an ITS point of view, has promoted relatively small,
human-readable maps, such as the SemNet map [67]. The key feature that makes
these concept maps easy to understand is that they are radial, with a core concept



in the middle of the map and a single layer of links radiating from that concept.
End nodes linked to the core concept can potentially be the centers of their
own maps, but each map is coherent by itself. From the psychology literature,
we adopt a limited set of edges linking two nodes in the concept map [70, 71].
Discrete sets of edges are also common in ontologies, e.g. is-a or has-part.
For Guru, a salient advantage of having a restricted set of edges is that they
facilitate both generating questions and answering questions from the map [70,
71].

Recently, we developed a semi-supervised procedure for extracting concept
maps with radial structure and discrete set of edges [72]. The procedure oper-
ates on a textbook, using a semantic parser and post processing to transform
the semantic parse into concept maps. More specifically, the LTH SRL Parser
[73] outputs a dependency parse annotated with semantic roles derived from
Propbank [74] and Nombank [75] for each sentence in the textbook. For each
syntactic or semantic relation found by the parser, we require that the start
node be a key term in our domain. Key terms are defined as those terms ex-
isting in the glossary or index of the book. If the start node is a key term, a
corresponding end term is found in the parse, and then the relation linking them
is classified using a hand-built decision tree. Some relations are syntactic, e.g.
is-a is determined by the presence of a “be” main verb as in “an abdomen is
the posterior part of an arthropod’s body.” Other relations are semantic and are
classified using the semantic information returned by Nombank or Propbank,
e.g. has-part is determined by “body” in the example above because “body”
is a Nombank predicate whose sense gloss is “partitive part.” This process of
concept map extraction is semi-supervised because the key terms and edge rela-
tions have been manually defined for our domain, but the rest of the procedure
is unsupervised.

5.2 Domain and student modeling

The concept map extracted from Guru’s biology textbook contains roughly
30,000 triples centered around 2,000 terms. Thus it is a fairly well elaborated
model of the domain. The triples allow us to query particular properties of the
key terms in our domain:

ABDOMEN is-a part
ARTHROPOD has-part ABDOMEN
ABDOMEN has-property posterior

It is fairly straightforward to build an overlay student model around this domain
model. One can consider each key term as a chunk the student should master, and
calculate a coverage score based on the number of triples a student has appeared
to master. Although each chunk may be considered as a kind of expectation, or
bundle of expectations, the overall structure of the concept map-based domain
model is different from the script based model of EMT dialogue described in
Section 2, in at least three ways. First, the concept map expectations are not



attached to a particular problem, but instead are general to the domain. Second,
rather than a limited set of expectations, the concept map (in theory) includes
all of the salient relations in the biology textbook. Finally, the concept map
relations, consisting of triples, are more structured than AutoTutor expectations,
which are undifferentiated LSA vectors. In other words the concept map-based
domain model appears to be more general, have broader coverage, and be more
structured than curriculum script based EMT dialogue.

We are currently building richer links between the standards for high school
biology instruction in our state and concept maps we’ve extracted from the state
textbook. This will allow us to better focus the domain and student models of
Guru to the content covered by state-wide standardized testing, which in turn
will make it easier to integrate Guru into classroom activities.

5.3 Interpretation of student utterances

In Guru, and in an ITS generally, interpreting a student utterance means map-
ping that utterance to the domain model. In the case of Guru, which uses an
overlay student model, such mapping facilitates both interpretation of the stu-
dent utterance as well as assessment of the student’s current understanding. The
most straightforward way to accomplish this mapping is to use the concept map
extraction technique from Section 5.1 on the student’s utterances, and compare
the resulting triples with those in the domain and student models. Intuitively,
there are more ways to compare triples than monolithic LSA vectors. By defini-
tion, each triple has three components, and Guru’s feedback can be differentially
driven by the correctness of each component.

If only the start node of a student’s triple is incorrect, we can hypothesize
that the student has not adequately discriminated their start node from the ac-
tual start node. For example, if the student’s utterance contains the triple white
blood cell has-consequence delivers oxygen, then we can identify that this
student knows something about red blood cells that is being incorrectly general-
ized to white blood cells. If only the edge relation of a student’s triple is incorrect,
then we can hypothesize that the student knows two concepts are related, but
misunderstands the type of relation. For example, if the student’s utterance con-
tains the triple red blood cell lacks delivers oxygen, then we can target the
lacks relation for remediation. Finally, if the end node only is incorrect, then we
might hypothesize that the student lacks sufficient background knowledge. For
example, the triple red blood cell has-property found in plants likely indi-
cates that the student knows absolutely nothing about red blood cells, and some
direct instruction is needed. These are just examples of possible strategies, but
they illustrate how a concept map representation composed of triples can be used
to make fine discriminations of the student’s error and respond appropriately.

5.4 Generating direct instruction

Just-in-time direct instruction is, by definition, unplanned. As such it is impos-
sible to render from a curriculum script, which is essentially pre-planned. Rather



just-in-time direct instruction must be generated dynamically from an existing
domain model. Concept maps have been previously used to generate text. Our
concept maps use a fixed set of edge relations that can be set into correspondence
with certain question types, e.g. definitional, causal consequent, and procedural,
for both the purposes of answering questions [70] as well as generating them
[71]. For example, red blood cell has-consequence delivers oxygen can be
used to generate the questions “What causes oxygen to be delivered,” “What
does a red blood cell do,” or “What can you say about a red blood cell and
oxygen” depending on whether we want to query the start node, the end node,
or the edge relation between them respectively. Of course, given the same triple,
it is straightforward to create direct instruction like “a red blood cell delivers
oxygen.”

A similar approach is used in the Betty’s Brain ITS [76,77]. In this “learn-
ing by teaching” system, students teach an animated agent named Betty, whose
brain is visible as a causal concept map with additional hierarchical (i.e. is-a)
and descriptive relations (i.e. has-property). Students teach Betty by explicitly
creating linkages in the concept map “brain.” Betty can “take” quizzes by ap-
plying a qualitative reasoning algorithm to the causal concept map. Moreover,
Betty can describe her reasoning by reading off the relationships in the map, e.g.
light increases algae growth which decreases oxygen in the water.

5.5 Limitations

In this section, we have outlined some of the major dimensions in which we
believe expert human tutors differ from novice human tutors, and the implica-
tions for these differences on the design of an expert ITS. The major differences
that we have emphasized, the domain model, the student model, interpretation
of student utterances, and generation of direct instruction, appear to be well
supported by a concept map knowledge representations. However, although our
preliminary observations are plausible, these applications have yet to be rigor-
ously evaluated.

6 Conclusion

This chapter described our previous and ongoing investigations into the conver-
sational interaction that defines human tutoring. Both our analyses of novice
and expert human tutors are corpus-based, driven by extensive collections of
human tutoring dialogues. Our goal is to better understand the representations
and processes of human tutoring by building computational models in the form
of intelligent tutoring systems that embody our theory.

For novice human tutoring, we have identified three major dialogue struc-
tures, including the 5-Step Tutoring Frame, EMT dialogue, and conversational
turn management. These three structures are nested such that each occurs within
its preceding structure. These three structures are comprehensive enough that
they can be used to specify the runtime of an ITS, and we have done so in the ITS



AutoTutor. The 5-Step Tutoring Frame defines the overall structure of a prob-
lem, the EMT dialogue defines the components of a problem, and conversational
turn management defines how each tutor turn is constructed in a conversation-
ally appropriate way. In experimental evaluations of learning gains, AutoTutor
yields an approximately .8 effect size increase relative to control conditions. Rel-
ative to the .4 effect size for novice human tutoring reported in a meta-analysis
[2], AutoTutor appears to be convincing as a model of novice human tutoring
both in terms of its structure and its effectiveness.

Our recent collection and analysis of expert human tutoring has revealed
some differences which may be attributable to the difference between expert
and novice human tutors. The expert tutors in our study manifested very com-
plex conversational interaction relative to novice human tutors, including dia-
logue modes, functional clusters of dialogue moves within modes, and finally the
dialogue moves themselves. As discussed in Section 4, there is no clear corre-
spondence between these dialogue structures and the structures associated with
novice human tutoring. Moreover, our analyses of expert human tutoring suggest
that expert human tutors utilize more precisely defined and well-organized do-
main and student models, are more precise in evaluating and responding to stu-
dent answers, and utilize a just-in-time direct instruction that is highly adapted
to the student’s current knowledge state.

We have proposed a particular formulation of concept maps to address these
four issues, and we have outlined how these concept maps can be extracted
from a textbook, alleviating the burden of domain model authoring. Using the
concept map representation, we have further proposed several strategies for ad-
dressing the four salient phenomena in our analysis of expert human tutoring,
including the domain/student model, interpretation of student utterances, and
generation of direct instruction. Though our current assessments are promising,
these strategies await a more rigorous evaluation.

Moreover, since the goal of any ITS is to produce learning gains, the conclu-
sive evaluation of the concept map representation and associated strategies is a
learning outcome study. We are currently engaged in curriculum development,
usability studies, and unit testing in preparation for a learning outcome study. If
we have properly identified and represented the differences between expert and
novice human tutors, then this should be reflected in a corresponding difference
in learning gains.
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