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ABSTRACT 

 

Intelligent Tutoring Systems (ITS) simulate the behavior and pedagogy of human tutors. Several meta-analyses have 

found that ITS are generally as effective as human tutors at promoting learning. Unfortunately, ITS are extremely 

expensive to produce, with some groups estimating that it takes 100 hours of authoring time from AI experts, 

pedagogical experts, and domain experts to produce 1 hour of instruction. The expense of creating ITS seems to be 

the largest barrier to scaling up ITS for widespread adoption. Some groups have created specialized authoring tools to 

address this problem. However, these authoring tools still require experts to use them. We have developed an 

alternative approach that replaces authoring tools with a new learning environment and replaces experts with novices. 

In our approach, novices read static content like books and web pages together with a virtual student who proposes 

summaries, questions, concept maps, and predictions about the content being read. The virtual student combines AI 

with the corrections of previous human novices to continuously improve its summaries, questions, concept maps, and 

predictions. Our previous research has shown that by correcting errors that the virtual student makes, human novices 

learn the content better than reading alone. Moreover, by correcting errors, human novices implicitly author the content 

needed to create an ITS. Our current research has created the infrastructure to implement this approach in the real 

world and has evaluated this infrastructure by generating over three thousand tutoring modules from the Navy 

Electricity and Electronics Training Series. The tutoring modules run on a previously developed ITS for electronics 

that tutors students by holding a conversation in natural language.     
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INTRODUCTION  

 

Intelligent tutoring systems (ITS) are artificial intelligence-powered computer programs designed to implement the 

behavior and pedagogy of human tutors. Not only are ITS twice as effective at promoting learning than the previous 

generation of computer-based instruction, but they are also generally as effective as human tutors (Kulik & Fletcher, 

2016). Although they have existed for decades, intelligent tutoring systems have, for the most part, seen only limited 

deployments in education and industry (cf. Ritter, Anderson, Koedinger, & Corbett, 2007). Given the effectiveness of 

ITS, their lack of general use is somewhat surprising. The superiority of tutoring over classroom instruction is well-

known (Bloom, 1984). Presumably, the reason we still have classrooms is one of cost: it is simply too expensive to 

provide individualized instruction with human tutors. By comparison, ITS can scale for almost no cost. After all, ITS 

are simply computer programs and can be copied just as easily as any other computer program. So why is there an 

ITS scaling problem? 

 

In the ITS community, the scaling problem has primarily been defined as a problem of authoring (Sottilare, Graesser, 

Hu, & Brawner, 2015). Although ITS are cheaper to duplicate than human tutors, it is generally believed to take a 

hundred hours or more of authoring effort to create one hour of instruction for an ITS (Aleven, McLaren, Sewall, & 

Koedinger, 2009; Corbett, 2002). Under this view, it is not the distribution cost that limits the deployment of ITS so 

much as the upfront development cost. Accordingly, authoring tools for ITS have been an active area of inquiry for 

several decades, and recent examples of authoring tools are quite effective, reducing the hours of authoring per hour 

of instruction ratio from approximately 100/1 to 15/1 (Aleven et al., 2016). 

 

However, the users of these authoring tools are typically experts. Building an ITS requires multiple types of expertise, 

including programming, artificial intelligence, instructional design, and subject matter expertise. The primary 

objective of most ITS authoring tools is to mitigate expertise in programming and artificial intelligence (Aleven et al., 

2016; Murray, 1999). This is a clear improvement over not having authoring tools, but it also calls into question the 

larger issue of expertise in ITS development. One might argue that the field has traded one scarce resource (human 

tutors) for an even scarcer resource: a convergence of experts in programming, artificial intelligence, instructional 

design, and the subject matter in question. After all, a human tutor training program may take a few days to a few 

weeks, but the expertise to make an ITS takes many years—and a team of PhDs. 

 

We have previously proposed and designed a system called BrainTrust that authors ITS without experts and without 

authoring tools (Olney & Cade, 2015). In our approach, novices read static content like books and web pages together 

with a virtual student who proposes summaries, questions, concept maps, and predictions about the content being read. 

The virtual student combines AI with the corrections of previous human novices to continuously improve its 

summaries, questions, concept maps, and predictions. Our previous research has shown that by correcting errors that 

the virtual student makes, human novices learn the content better than reading alone. Moreover, by correcting errors, 

human novices implicitly author the content needed to create an ITS. We call this general approach authoring 

implicitly with a symmetric learning task (AISLT).  In this paper, we describe an end-to-end implementation of our 

system and present results from using our system to generate an ITS from the Navy Electricity and Electronics 

Training Series (NEETS) textbooks. 

  

In the following sections, we motivate our approach by briefly describing types of ITS and their corresponding 

authoring tools. We then focus on a particular type of ITS known as dialogue-based tutors (Nye, Graesser, & Hu, 

2014), which are particularly suitable for our approach, and describe how we map authoring of dialogue-based tutors 

to activities in a secondary learning environment. The remaining sections describe the efforts of the present study, 

including converting the NEETS into web pages, extracting initial knowledge representation hypotheses from the 
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NEETS, the implementation of the client/server for AISLT, and the generation of ITS from the curated knowledge 

representations. 

 

AUTHORING INTELLIGENT TUTORING SYSTEMS 

 

Given the approximately 50 years of research on ITS, variability in ITS structure and strategies is fairly high. However, 

there is substantial agreement in the field about what an ITS should do in terms of adapting to an individual student 

(Kulik & Fletcher, 2016). ITS adaptivity can be thought of as having two levels: an outer loop of problem selection 

and an inner loop of problem steps (VanLehn, 2006). Traditional computer-based instruction systems, which are less 

adaptive than ITS, only have an outer loop. As a result, they provide feedback only on student solutions. In contrast, 

ITS have an outer loop and an inner loop, where the inner loop gives students feedback on each step of the solution. 

This ability to give immediate feedback on student steps is consistent with theories of human tutoring (Olney, 2014). 

How a given ITS instantiates the inner and outer loops varies significantly in practice and has implications for 

authoring. For the sake of discussion, we focus on three popular ITS paradigms: model- or example-tracing tutors 

(Anderson, Corbett, Koedinger, & Pelletier, 1995; Aleven et al., 2016), constraint-based tutors (Mitrovic, 2012), and 

dialogue-based tutors (Nye et al., 2014). 

 

Model- or example-tracing tutors are path-oriented and make a direct comparison to an expert solution. Historically, 

these tutors are based on the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which represents 

procedural knowledge as production rules (Anderson et al., 1995; Anderson & Lebiere, 1998). Given an initial state 

(i.e., a dictionary of name-value pairs), a single matching production rule will generate a new state. Because multiple 

production rules may match a given state, the application of all production rules, iteratively, produces a large 

(potentially infinite) tree rooted in the initial state. Thus, for performance reasons, the implicit paths created by 

production rule application may be generated at runtime, pre-computed, or constrained by student input (Heffernan, 

Koedinger, & Razzaq, 2008). The process of model-tracing matches student input to expert knowledge (as 

corresponding production rules) by applying production rules to the current state to generate a frontier of possible 

states and then searching for the student input in that frontier (cf. depth- or breadth-first search). Because the student 

may make a mistake inconsistent with expert knowledge, model-tracing tutors typically include so-called “buggy 

production rules” to model these mistakes. Without these buggy rules, model-tracing would be unable to interpret 

erroneous student inputs, because they would be outside what the expert model could represent. From an authoring 

standpoint, model-tracing requires cognitive modeling and AI expertise to express all possible solutions to a problem 

in terms of production rules as well as buggy rules for common errors (Blessing, Gilbert, Ourada, & Ritter, 2009). 

Authors must also create instructional messages tied to the cognitive model, including remediation messages for the 

application of buggy rules and hints for when students get stuck. Recent work has tried to automate authoring model-

tracing tutors by using inductive logic programming (Li, Matsuda, Cohen, & Koedinger, 2015; Matsuda, Cohen, & 

Koedinger, 2015), but this work still requires programming and AI expertise to bootstrap the system and correct the 

resulting production rules. 

 

Example-tracing tutors follow the path-oriented, direct-comparison approach of model-tracing tutors but without 

production rules. Instead, example-tracing tutors record solution paths (and buggy paths) demonstrated by experts and 

then generalize them to allow for divergent behavior (Aleven et al., 2009; Aleven et al., 2016). As with model-tracing, 

these paths require authoring appropriate error messages and next-step hints. Additionally, authoring example-tracing 

tutors usually involves additional annotations to the solution paths to allow additional flexibility in interpreting student 

input, a process known as generalizing the solution paths. Generalization addresses the fundamental difference 

between model-tracing and example-tracing, which is that model-tracing generates solution paths by recombining 

production rules in various ways, while example-tracing (without generalization) has rigid prescripted solution paths. 

Generalization requires authoring of additional annotations to solution paths specifying whether steps can be done in 

alternate orders, skipped, repeated, or parameterized such that a range of student inputs could match a step (Aleven et 

al., 2009). In theory, the production rules created for model-tracing can be reused across multiple problems in a 

domain, while example-tracing solution paths are specific to the problems they are authored for as well as for 

isomorphic problems. However, despite the potential reuse of production rules in model-tracing tutors, example-

tracing tutors are arguably more cost-effective. Notably, example-tracing tutors created with the CTAT authoring tool 

obviate the programming and AI expertise needed to create model-tracing tutors (Aleven et al., 2009). 

 

Constraint-based tutors (Mitrovic, 2012) are constraint-oriented and make an indirect comparison to an expert 

solution. Although constraints may be defined in various ways (cf. Ohlsson & Mitrovic, 2007), the definition that 
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most distinguishes them from path-based approaches is as a test for a current state of affairs. Under this definition, 

constraints can be thought of as the necessary and sufficient conditions to define the solution set, i.e., the set of all 

possible solutions to a problem. In other words, solutions that do not violate any constraints are correct, and the 

violation of a constraint implies a solution is incorrect. Constraints do not specify a path or set of paths; they define a 

space of correct solutions. Each constraint is defined in terms of a relevance condition and a satisfaction condition 

(Ohlsson, 1992). The relevance/satisfaction relationship is similar to the if/then logic of a production rule, except that 

instead of the then portion being an action (e.g., if problem statement is a∕b + c∕d then multiply a∕b by d∕d and c∕d by 

b∕b), the then portion defines what must be satisfied or true in a student solution (e.g., if problem statement is a∕b + c∕d, 

and student solution is (a + c)∕n then b=d=n. Because constraints specify what must be true of a solution rather than a 

particular solution or the steps leading to a solution, they are particularly well-suited for ill-defined tasks. Alternative 

definitions of constraints include path constraints, which are constraints on solution step order; semantic constraints, 

which are constraints that reference an external criterion; and syntactic constraints, which reflect what must be true at 

the step level (e.g., age must be a non-negative number and constant throughout the problem). These alternative 

constraints allow constraint-based tutors to match the behavior of path-oriented tutors more closely. Because authoring 

constraint-based tutors requires significant expertise in programming and AI, specialized authoring tools like ASPIRE 

have been developed (Mitrovic et al., 2009). However, although ASPIRE does not require programming, it does 

require manual construction of an ontology, which arguably requires some AI expertise. 

 

The third major ITS paradigm is dialogue-based tutors (Nye et al., 2014), which are constraint-oriented and make a 

direct comparison to an expert solution. Although dialogue-based tutors have a long history, perhaps the most 

influential dialogue-based tutor of the last two decades is AutoTutor (Graesser, Chipman, Haynes, & Olney, 2005), 

which has influenced over two dozen other ITS (Nye et al., 2014). Due to space constraints, the following discussion 

focusses on AutoTutor as representative of dialogue-based tutors, though differences exist amongst various systems. 

Rather than use production rules or constraints to model knowledge and then annotate these knowledge representations 

with language, e.g., error remediation when a student violates a constraint, AutoTutor represents knowledge using 

language and interacts with students using language. In other words, in dialogue-based ITS like AutoTutor, everything 

is based on dialogue and language. The structure of the dialogue is based on observations of human tutoring (Person, 

Graesser, Magliano, & Kreuz, 1994; Graesser, Person, & Magliano, 1995; Olney, Graesser, & Person, 2010), and 

follow what Graesser and colleagues refer to as the 5-step tutoring frame: 

 

1. Tutor poses the problem 

2. Student attempts to answer 

3. Tutor provides brief evaluation and feedback 

4. Student and tutor have a multi-turn dialogue to improve the answer 

5. Tutor assesses whether student understands the answer 

 

The fourth step of this frame is where most of the rich tutoring interaction occurs, and this rich interaction has been 

described by Graesser and colleagues as Expectation and Misconception Tailored (EMT) dialogue. An expectation is 

part of the ideal answer to the problem or question posed by the tutor. Commonly, the ideal answer has multiple such 

expectations, each represented by a sentence, such that the ideal answer as a whole is represented by a multi-sentence 

paragraph. During EMT dialogue, the tutor works with the student to improve their answer to bring it closer to the 

ideal answer. To achieve this goal, tutors use various dialogue strategies like asking leading questions, providing 

feedback to student answers, providing examples, requesting clarifications, rearticulating solutions, and making 

metacognitive comments, e.g., “This is how to remember ...” 

 

The full complexity of EMT dialogue has not yet been addressed by any dialogue-based tutor. Most of these ITS use 

just 11 of the 34 “dialogue moves” found in human tutoring (Olney et al., 2010), problem statement, pump, repetition, 

encouragement, hint, prompt, assertion, positive/neutral/negative feedback, and summary, and of these, only hint-

prompt-assertion is used to implement EMT dialogue. EMT dialogue proceeds as follows. First, the tutor assesses 

whether any expectations have not been covered by the student’s answer. This assessment is done using a statistical 

technique called Latent Semantic Analysis (LSA; Landauer, McNamara, Dennis, & Kintsch, 2007). In brief, LSA 

compares student answers to expectations by first converting both into vectors and then calculating the angle between 

the vectors. If the angle is close to one, the answer and expectation are almost identical. Typically, a threshold is set 

between zero and one to capture whether a student’s answer is close enough to the expectation to be considered correct. 

Although LSA is not very precise, e.g., it is insensitive to word order, it has the advantages of being robust to noise 

and does not require labeled data to train, only a collection of documents in the domain. AutoTutor uses LSA to check 
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whether an expectation has been covered and select the next expectation (Graesser et al., 2005). Once an expectation 

has been selected, AutoTutor uses the hint-prompt-assertion strategy to get the student to articulate the expectation. 

The hint-prompt-assertion strategy tries to get the student to do as much of the explaining as possible by starting with 

a hint but backing off to a prompt if the hint is not successful at covering the expectation, and further backing off to 

an assertion (a paraphrase of the expectation) if the prompt is not successful. For example, the expectation “The force 

of gravity pulls the balls downward,” might have as a hint, “How does the Earth’s gravity affect objects?” and a 

prompt, “Gravity pulls objects in a direction that is ______?” After each student answer, AutoTutor provides 

positive/neutral/negative feedback, and if the student covers the expectation, AutoTutor either moves to the next 

expectation or moves to the summary if all expectations are covered. Dialogue-based tutors are constraint-oriented 

and make and direct comparison to an expert solution: covering each expectation is a constraint, and the expectations 

themselves are part of an expert answer. 

 

The requirements for authoring a dialogue-based ITS like AutoTutor are relatively simple. Authors must create a 

problem statement and corresponding ideal answer, break the ideal answer into expectations, and then create multiple 

(usually two) hints, prompts, and assertions for each expectation, and write a summary (optionally identical to the 

ideal answer). Additionally, authors must collect documents in the domain suitable for creating an LSA space; 

typically, one or two textbooks are used, but it is also possible to use a general document collection and then cover 

domain-specific vocabulary by augmenting the corpus with selected Wikipedia pages (Riordan, Dale, Kreuz, & Olney, 

2011). Because the inherent complexity of authoring dialogue-based ITS is low, few authoring tools have been 

developed. Early authoring tools were essentially forms guiding the user towards entering the information above and 

require no programming or AI expertise (Susarla, Adcock, Eck, Moreno, & Graesser, 2003). Notably, later authoring 

tools were more complex (Cai, Graesser, & Hu, 2015), e.g., requiring flowcharts to sequence conversations, but these 

authoring tools focus on trialogues between the user, a peer agent, and a tutoring agent, which is a conceptually distinct 

and more complicated task than authoring tutorial dialogues. 

 

The major ITS paradigms discussed in this section have corresponding authoring tools to reduce the expertise required 

to create an ITS. The authoring tools for path-based ITS focus on eliminating the need for programming and AI 

expertise, and the authoring tools for constraint-based ITS focus on eliminating the need for programming and some 

(but not all) AI expertise. Dialogue-based ITS, in contrast, do not require any programming or AI expertise. However, 

what all the major ITS paradigms share, and what their authoring tools have not been able to eliminate, is the need for 

domain expertise. In each case, a domain expert is needed to pose problems, one or more solutions, and generate hints 

or other feedback messages. 

 

AUTHORING IMPLICITLY WITH A SYMMETRIC LEARNING TASK (AISLT): BRAINTRUST 

 

While eliminating or reducing the need for programming and AI expertise for ITS authoring is a significant 

achievement, it does not address the shortage of experts motivated to use these tools. The shortage of experts is a non-

trivial problem. It requires many years of practice in a domain to become an expert (Ericsson, Krampe, & Tesch-

Römer, 1993), and experts typically use that expertise for endeavors unrelated to authoring ITS content. Particularly 

in fields where new discoveries or changing educational standards alter the curriculum, experts are needed not just 

once but on an ongoing basis to update and curate the content. 

 

We have previously proposed and designed an approach that addresses the shortage of motivated experts (Olney & 

Cade, 2015). This approach, which we call authoring implicitly with a symmetric learning task (AISLT; pronounced 

eyelet), considers the problems of expertise and motivation independently. Expertise is addressed by replacing experts 

with novices using a crowdsourcing strategy (cf. wisdom of the crowds). Using crowdsourcing, each novice’s work 

is checked (and potentially edited) by other novices until confidence in correctness is high. This approach has been 

called iterative improvement in the human computation literature, where it has been used with novices to check and 

create ontologies (von Ahn, 2005; Cycorp, 2005). Motivation is addressed by embedding the authoring task in some 

other activity in which the novices are already engaged. This cloaking of the true task is sometimes referred to as 

implicit crowdsourcing; a common example is the reCAPTCHA where users select images containing cars or street 

signs in order to prove they are human, producing labeled data as a side effect (von Ahn, Maurer, McMillen, Abraham, 

& Blum, 2008). The motivation of our implicit authoring approach is highly similar to reCAPTCHA: authoring an 

ITS is a side effect of doing work the novices would already be doing, namely studying their class textbook. 
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Our specific AISLT implementation, BrainTrust, enhances assigned reading activities with a peer agent who tries to 

learn with the human student. As the human student reads, the peer agent enacts various reading comprehension 

strategies based on the reading, and the human student corrects the peer agent. We specifically chose the four reading 

comprehension strategies of reciprocal teaching (Palincsar & Brown, 1984), because they not only help students better 

understand the text (National Institute of Child Health and Human Development, 2000) but also reflect the work 

needed to create a dialogue-based ITS (Olney & Cade, 2015). In reciprocal teaching, teacher and students take turns 

reading the text while generating questions, clarifying concepts, summarizing, and making predictions about what’s 

coming up next. Each participant comments on and contributes to the questions, summaries, etc. produced by other 

participants. The work done executing reciprocal teaching strategies overlaps with the work done for authoring 

dialogue-based ITS. In terms of our AISLT framework, reciprocal teaching strategies are a symmetric learning task 

with respect to dialogue-based ITS. Table 1 compares reciprocal teaching strategies, their realizations in BrainTrust, 

and the authoring tasks they address.  

  

Table 1.  Alignment of reciprocal teaching (RT) with BrainTrust and authoring activities 

RT Activity BrainTrust Activity        Authoring Task 

Summarizing Gist Problem Statement Creation 

Asking Questions Question Generation  

Clarifying Concepts Concept Mapping Expectation & Question Creation 

Predicting Predicting  

    

BrainTrust is inspired by reciprocal teaching but adapts it to fit a 1-to-1 interaction where the roles aren’t symmetric 

(the peer agent is always the enactor, corrected by the human student). During a BrainTrust session, the human student 

first reads a text block (between 250 words and a page) and then corrects the peer agent as the peer agent enacts the 

activities as ordered in Table 1. First, the gist activity summarizes what the text is about in a single word or phrase. 

For example, the peer agent might say, “I think this is about atoms, is that right?” and display this text on the screen, 

giving the human student the ability to edit the word atoms. This high-level summary is useful for the authoring of 

tutor openings and problem statements for a text block like, “What can you say about atoms here?” Next, during 

question generation, the peer agent generates questions about the text, and students may edit the question and also 

give an answer. Question generation currently has no role in authoring, but it could potentially be used to validate 

questions generated from the concept map were created without errors. Perhaps the most key activity in BrainTrust is 

concept mapping. The concept map operationalizes the reciprocal teaching strategy of clarifying concepts (i.e., as 

opposed to verbally) and can also be viewed as a low-level summary. For authoring, concept maps can be used to 

automatically author tutor expectations and questions using AI and natural language processing techniques (Olney, 

Person, & Graesser, 2012; Olney, Graesser, & Person, 2012). Such questions range from relatively shallow questions 

targeting a definition or property, e.g., “What are molecules made of?” as well as deeper causal questions, e.g., “Why 

are ions formed?” Finally, the prediction activity has the peer agent guess what is coming up next. In summary, concept 

maps can be used to author expectations, assertions (identical or paraphrased expectations), hints, and prompts, and 

the other activities serve to filter and validate this content. Gists can be used to author openings or problem statements. 

The other activities have no authoring purpose in the current system but are kept to increase motivation (Olney & 

Cade, 2015). 

 

Previous work on BrainTrust focused on design (Olney & Cade, 2015), with the goal of implementing a design that 

could both help students learn while reading and also implicitly author an ITS. This is a key property of the AISLT 

approach that distinguishes it from schemes like reCAPTCHA: implicit authoring and learning are happening 

simultaneously. The methodology used in that work centered on mock-up interfaces, i.e., interfaces that presented the 

same scripted materials to all participants. Results from that work suggest that BrainTrust can help students learn more 

than reading alone and that students are able to correct peer agent errors, demonstrating that AISLT approach is 

feasible. Our current research has created the infrastructure to implement this approach in the real world (see Figure 

1) and has evaluated this infrastructure by generating knowledge representations and tutoring modules from 

approximately five thousand pages of books from the Navy Electricity and Electronics Training Series. The 

automatically authored tutoring modules run on a dialogue-based ITS for electronics. The remaining sections of this 

paper describe this effort in three phases: the bootstrap system that creates the initial peer agent knowledge 

representation hypotheses and dialogue, the improvement system that presents peer agent hypotheses to the user and 

saves user modifications, and the generation system that uses the curated peer agent knowledge representations to 
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author tutoring modules for a dialogue-based ITS. We report evaluations on the bootstrap system and the generation 

of tutoring modules only; evaluation of the human computation system remains for future work. 

 

Figure 1: BrainTrust during a concept mapping activity 

 

BOOTSTRAP SYSTEM 

 

The design of BrainTrust presupposes that the learning materials are already online in a machine-readable format (e.g., 

HTML). This is a reasonable assumption as most online textbooks provide machine-readable access for screen readers 

used by the visually impaired. Because the present study used legacy materials in PDF form, and such legacy materials 

may present complications for years to come, we briefly describe the process of making these materials machine-

readable. 

 

Legacy Format Conversion 

 

The Navy Electricity and Electronics Training Series (NEETS) (Navy, 1998) is a series of self-study manuals on 

electronics for various Navy ratings. The NEETS contain 24 manuals consisting of 4976 pages total. The PDF-

formatted NEETS contain text in a variety of fonts and styles, as well as images and diagrams. Thus, to make the 

NEETS usable by BrainTrust requires conversion of the PDFs to HTML in a way that preserves the semantics of the 

document elements. For example, the NEETS contain in-text questions and answers, so these must be distinguished 

from main body text for the purposes of parsing and knowledge extraction. Typical HTML would add these document 

semantics using different kinds of tags, e.g., <p> for main body text, or class attributes to identify non-body elements. 

Unfortunately, off the shelf PDF conversion tools do not add these document semantics, so a custom approach is 

required. In the present study, we used the following procedure, though alternative procedures are no doubt possible. 

First, the PDFs were converted to non-annotated HTML using the Apache Tika toolkit (Apache Foundation, 2017). 

In this first-pass HTML, every text element was annotated with a <p> tag, every image was annotated with a <img> 

tag, and every page was annotated with a <div> tag. Next, a custom parser was manually developed to extract the 

semantic structure of the document from the first-pass HTML. The parser used custom logic based on the structure of 

the NEETS. A full description of the parser is outside the scope of the present discussion, but it categorized pages into 

types (e.g., table of contents, main text, and index), headers into types (e.g., chapter, section, and subsection), and 

page components into types (e.g., image caption, learning objective, or paragraph) as it traversed the raw HTML 

returned by Tika. The resulting semantic structure was stored as a JSON object and used to generate a new HTML file 

for each NEET with a structure consistent with its document semantics. For example, <p> tags were replaced with 

more appropriate tags and those tags were annotated with class attributes like <h3 class="subsection">. Top level 

navigation and pages links were also generated at this stage. Finally, a cascading style sheet was manually created to 
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match the format of the NEETS as closely as possible. The left-hand side of Figure 1 shows an example NEET 

transformed by this process. The full transformed NEETS are available at https://olney.ai/neets-web/. 

 

Knowledge Extraction 

 

Our previous work used semantic parsing combined with a predefined set of key terms (e.g., from a glossary or index), 

together with a link ontology to extract concept maps from text (Olney, Cade, & Williams, 2011; Olney, Person, & 

Graesser, 2012; Olney, Graesser, & Person, 2012). However, in a general AISLT system, a predefined set of key terms 

cannot be assumed. Additionally, the link ontology used in previous work would require the AISLT users to have 

some understanding of AI to use effectively. Thus, we developed a new methodology avoiding key terms and a link 

ontology and compared to a baseline methodology using key terms. 

 

Procedure 

NEETS main body text was parsed at the chapter level using syntactic and discourse parsing with coreference 

resolution (Surdeanu, Hicks, & Valenzuela-Escarcega, 2015). Coreference resolution outputs chains of words or 

phrases that refer to the same thing. For example, she, her, and Mary might be a coreference chain crossing several 

sentences about Mary. Discourse parsing segments the text into elementary discourse units (i.e., a main or subordinate 

clause) and annotates these units with relationships like contrast or elaboration.  

 

The two key tasks of the bootstrap AI are identifying the gist and concept map triples of each page (see Table 1). The 

bootstrap AI selected a gist for each page by selecting the coreference chain with the greatest length on the page, 

removing stopwords (common words). The criterion of using the longest chain ensures that the gist is the most 

centrally connected phrase on the page. The triples for each page were selected using two different procedures 

involving coreference chains. The first procedure (KEY) selected all sentences containing terms having coreference 

chains of length two or more and which had a term in the chain that was a key term (key terms in the NEETS are 

marked by uppercase formatting) such that each sentence had at least two such chains. Note that this use of key terms 

for selection of sentences is different from previous use of key terms for defining nodes in a concept map. The second 

procedure (CLOZE) follows previous work on generating cloze practice items (Olney, Pavlik, & Maass, 2017), which 

selects all sentences containing terms having coreference chains of length two or more such that each sentence had 

three such chains, excluding stopwords. After both procedures selected sentences on a page, those sentences were 

broken into elementary discourse units that were then converted into triples using concept map generation. Concept 

map generation used a relaxed version of previously described methods (Olney et al., 2011; Olney, Graesser, & Person, 

2012) in the sense that no key terms were assumed, no link ontology was used, and a single triple was generated from 

each elementary discourse unit. A full description of this process is outside the scope of the present discussion, but 

the basic process was 1) use the subject plus modifiers as the start node, 2) use the main verb and any following 

prepositions as the edge, and 3) use the remaining text as the end node. For example, the elementary discourse unit, 

“the compass needle will move in the opposite direction,” will become the triple <compass needle> - <move in> - 

<opposite direction>. Our evaluation of the bootstrap AI focused on gists and triples, but we briefly note that for 

human computation purposes, questions can be generated from these triples using existing methods (Olney, Graesser, 

& Person, 2012), or in cases like the NEETS where in-text question/answer pairs are also present, those 

question/answer pairs can be used as well. Finally, predictions were simply the gists of following pages. 

 

Results & Discussion 

The primary metrics for evaluating the bootstrap AI are successful creation of gists and successful creation of triples. 

Of the 3328 NEETS pages containing content (i.e., not table of contents, index, etc.), all had successful creation of 

gists. Triple creation differed dramatically between KEY and CLOZE procedures as shown in Table 2.  

 

Table 2.  Triple generation of KEY and CLOZE procedures in bootstrap AI 

Procedure Success Median* Q1* Q3* 

KEY .328 1 1 2 

CLOZE .961 5 3 8 

Note.Q1= 25th percentile; Q3=75th percentile 

*Calculated for success cases only 

 

https://olney.ai/neets-web/
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The CLOZE procedure was able to recover at least one triple on nearly all pages, while the KEY procedure was only 

able to recover that many on a third of the pages. In the middle 50% of those successful cases, the CLOZE procedure 

yielded 3-8 triples compared to the KEY procedure’s 1-2 triples. The difference between the two procedures appears 

to be that the KEY procedure’s reliance on key terms specified by the NEETS is too restrictive—more restrictive than 

the CLOZE procedure requiring an additional chain per sentence. These results strongly suggest that key terms are 

not needed to get good coverage, and they additionally suggest that key terms may sometimes be insufficient for this 

task.  

 

IMPROVEMENT SYSTEM 

 

User Interface 

 

The user interface in Figure 1 was largely informed by the previous mock-up interface (Olney & Cade, 2015). 

However, the mock-up interface was created using Microsoft’s Silverlight plugin technology, and browser plugins 

have since fallen out of favor with many browsers because of the security risks they create. Accordingly, a new 

interface was developed using JavaScript for client-side scripting. The user interface itself was written in the F# 

language and transpiled to JavaScript using the Fable compiler (Garcia-Caro, 2017). The interface is an Electron 

application (GitHub, 2016) with an embedded Chrome browser for displaying web pages. Electron is a cross-platform 

framework for developing desktop applications using web technologies and can run on essentially any platform that 

can run the Chrome browser. The new interface’s embedded browser allows students to authenticate with web pages 

as needed and to recover the structure of those web pages through the embedded browser API. In other words, the 

embedded browser allows total access to any web page the user reads, even pages that require authentication and use 

an encrypted connection. Most UI elements (e.g., buttons, text boxes, etc.) use the React framework for single page 

applications (Facebook, 2018) except for the peer agent and the concept map editor. The peer agent uses ThreeJS for 

JavaScript-based animation (Cabello, 2018; Stickman Ventures, 2017) and MaryTTS for text to speech capability, 

running as a local or remote server (Schröder & Trouvain, 2003). The concept map editor is written in D3, a JavaScript 

library for visualizing and interacting with data (Bostock, 2018). D3 provides a fine grain level of control over the 

concept map, including custom graph layouts. Like any single page application, the interface changes based on the 

current state of the application. The left-hand side, which contains the embedded browser, is constant throughout so 

that the user can always refer to the text. The right-hand side only appears when the peer agent is being taught and 

displays a single reading comprehension activity at a time (see Table 1). During each of the activities, the peer agent 

articulates the content of the current task, followed by a brief pause, after which the text of the task appears below the 

agent and becomes editable. Each activity has a Done button; when the user finishes the activity and presses the button, 

the interface presents the next activity if any. 

 

Human Computation 

 

The human computation server is built on top of the Node.js JavaScript runtime environment (Node.js Foundation, 

2018) and the Express web application framework (Holowaychuk, 2018). Express both supports an 

authentication/registration website for BrainTrust as well as a REST-ful API for human computation tasks. Because 

the server requires all users to be authenticated, users must register for an account using an email address or Google 

OAuth and log in before using BrainTrust. User registration information is stored in a MongoDB database (MongoDB, 

2018) together with user attributes for ability. MongoDB is a document-oriented NoSQL database (i.e., not a relational 

database); BrainTrust uses MongoDB for users (authentication, ability) and for URLs (URL, human computation). 

The available set of activities that a peer agent can invoke is determined by the current URL in the embedded browser 

of the user interface and the current state of the human computation process for that URL, as stored in MongoDB. 

This design assumes that each URL is a suitable size unit of text for the purpose of correcting the peer agent. In the 

NEETS version of BrainTrust, each page of text has a unique URL. This may be a limitation, and future work may 

need to have methods of subdividing pages and storing them separately in the database. Each URL entry in MongoDB 

contains a history of all the activities completed by users on that URL, i.e., a human computation timeline. For 

example, if a user completes all the activities for a text shown in Table 1, their revised activities are stored with their 

user identifier and their ability rating at that moment in time. Ability is therefore allowed to change over time without 

compromising the ability assessment for a particular set of revised activities. The initial bootstrap AI entry is coded 

as its own user, e.g., AIv1, and the bootstrap AI is invoked whenever a requested URL has no existing set of activities. 

When the user interface makes a request for activities (i.e., for the peer agent to present), the human computation 

algorithm traverses the history of all activities for that URL and selects the optimal activities using the following 
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criteria. First, each activity revision is scored by the ability of the user who produced it. Second, activity revisions that 

exactly match across users are rescored as the multiplication of those user’s abilities. Finally, the highest scored 

activity revision is returned to the user. In the case of triples, because our previous research suggests that users are 

better at noticing incorrect information than adding missing information, extra triples are intentionally added to the 

concept map to help ensure completeness. 

 

INTELLIGENT TUTORING SYSTEM GENERATION 

 

Procedure 

 

Generation of a dialogue-based ITS from the human computation database is currently an off-line batch process. A 

JSON data dump from MongoDB corresponding to the optimal activities for each URL was used as the basis for 

generating dialogue-based ITS modules. Because our evaluation did not include any improvement from human 

computation, this database dump is equivalent to the output of the bootstrap AI. These data are transformed in various 

ways to create tutoring modules, as described next. 

 

As previously discussed, only the gist and concept map activities are used for authoring. The gists, being single words 

or phrases, are used with natural language generation templates to produce openings and problem statements. For 

example, the gist, “energy levels of electrons,” could produce the opening, “Let’s talk about energy levels of 

electrons,” or the problem statement, “What can you say about the energy levels of electrons?” The triples are used to 

generate everything else in the tutoring module. Each triple is converted into a natural language sentence to create a 

corresponding expectation. The concatenation of expectations becomes the ideal answer to the problem. To elicit each 

expectation, hints and prompts are created using natural language generation techniques (Olney, Graesser, & Person, 

2012). Each expectation was parsed using a syntactic and semantic parser that assigned semantic role labels and 

predicates (Johansson & Nugues, 2008). Prompts are generated targeting the subject, object, and any semantic adjuncts 

of the parsed expectations. For example, the expectation, “the second shell contains 8 electrons when full,” would 

yield the questions, “What contains 8 electrons when full?”, “What does the second shell contain when full?”, and 

“When does the second shell contain 8 electrons?” for subject, object, and adjunct targets respectively. Hints are 

somewhat simpler to generate because they make use of templates targeting the same information as prompts, e.g., 

“Tell me about the second shell.” for the subject target. The tutorial dialogue generated from all these operations is 

formatted for the AutoTutor Conversation Engine (ACE) XML schema, at which point the finished module is 

uploadable to any ACE-conformant ITS. For the present study, resulting ACE tutoring modules were uploaded to 

ElectronixTutor (Graesser et al., 2018). 

 

Results & Discussion 

 

The primary metrics for evaluating ITS generation are the successful creation of minimally complete modules (i.e., at 

least one gist, triple, hint, and prompt was generated) and their properties. Ideally, modules will contain multiple 

triples each with multiple hints and prompts. Complete module creation again differed dramatically between KEY and 

CLOZE procedures as shown in Table 3. 

 

Table 3.  Tutoring module generation following KEY and CLOZE procedures in bootstrap AI 

 Triple Hint Prompt 

Procedure Success Median* Q1* Q3* Median* Q1* Q3* Median* Q1* Q3* 

KEY .315 1 1 2 4 3 7 3 2 5 

CLOZE .960 5 3 8 18 10 29 12 7 19 

Note.Q1= 25th percentile; Q3=75th percentile 

*Calculated for success cases only 

 

Using the gist and triples from the CLOZE procedure, minimal complete modules were successfully created for nearly 

all pages, while the KEY procedure’s gists and triples could only successfully generate minimal complete modules 

for about a third of the pages. These results are not surprising given the results of Table 2 because, without triples, it 

is impossible to generate a minimal complete module. However, these results further indicate that hints and prompts 
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can almost always be generated from a triple successfully, as the success rates for minimal complete modules are just 

slightly lower than the success rates for triples. 

 

In the middle 50% of successful complete modules, both the CLOZE and KEY procedures led to about two hints and 

prompts per triple, which is relatively ideal for dialogue-based tutors. However, because CLOZE procedure yielded 

3-8 triples compared to the KEY procedure’s 1-2 triples, these CLOZE procedure tutoring modules were much more 

fully developed in terms of dialogue, comparable in size to manually-authored tutoring modules. 

 

CONCLUSIONS 

 

While authoring tools for model-tracing, constraint-based, and dialogue-based tutors have attempted to reduce or 

eliminate the programming and AI expertise needed to create an ITS, they all require domain expertise to create ITS 

content. The AISLT approach provides a solution to this problem by replacing domain experts with novices who 

implicitly author an ITS while engaged in a symmetric learning task. The specific AISLT implementation described 

in this paper, BrainTrust, has novices implicitly author a dialogue-based tutor by performing reading comprehension 

exercises while reading their textbook. In this paper, we described the BrainTrust infrastructure and several evaluations 

of the infrastructure’s bootstrap AI and ITS module generation. Our studies to date continue to support the AISLT 

approach to authoring but with several limitations and issues for future work. First, the current AISLT implementation, 

BrainTrust, is only applicable to dialogue-based tutors. This limitation stems from the close correspondence between 

BrainTrust’s reading comprehension activities and the authoring tasks of a dialogue-based tutor. For a procedural 

domain requiring a path-oriented approach, it is unclear how the current reading comprehension activities would apply 

or what the alternative symmetric learning task would be. Similarly, it is unclear how the current reading 

comprehension activities could be used to author constraint-based tutors. Unless these limitations are overcome, an 

AISLT implementation like BrainTrust will not be effective for domains like mathematics and programming, though 

it will likely be effective for conceptual problem-solving domains where dialogue-based tutors have been built (see 

Nye et al., 2014, for a review). Another limitation is that it is still unknown whether the human computation process 

described here will iteratively improve knowledge to an acceptable state for generating tutoring modules, which is a 

key requirement for a successful AISLT implementation. Our previous work suggests that students are able to correct 

faulty knowledge, but it is possible that common misconceptions could creep in and contaminate tutoring module 

generation. To test this possibility would require several longitudinal trials in different subject areas. The major 

contribution of this paper was to present the complete BrainTrust infrastructure and show that it is ready to explore 

these questions within the broader AISLT framework. 
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