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Guru: Designing a Conversational Expert Intelligent Tutoring

System

Identification

There is substantial empirical evidence that one-to-one human tutoring is extremely

effective when compared to typical classroom environments (Bloom, 1984; Cohen, Kulik,

& Kulik, 1982; Graesser & Person, 1994). Unfortunately, a human tutor cannot be

provided to every child because there are simply not enough tutors. However, a

technological solution exists: intelligent tutoring systems (ITS), which mimic human

tutors, are accessible to anyone with a computer. We have successfully modeled the

strategies, actions, and dialogue of novice tutors (Graesser & Person, 1994; Graesser,

Person, & Magliano, 1995; Person, Graesser, Magliano, & Kreuz, 1994) in an intelligent

tutoring system with learning gains comparable to novice tutors (Graesser et al., 2004;

VanLehn et al., 2007). While this progress is significant, Bloom (1984) has reported that

accomplished human tutors can produce even greater learning gains than novice human

tutors. Building an ITS that mimics the pedagogy of expert human tutors is an ambitious

research goal. To address that goal, we are building Guru, an ITS designed to mimic

expert human tutors using advanced applied natural language processing techniques.

Investigation

Recently, Person and colleagues have undertaken a rigorous, large scale study of

accomplished, expert human tutors. They have recorded fifty expert tutoring sessions,

have transcribed the dialogues between tutor and student, and have coded the dialogues

on both a micro-level (speech acts) and macro-level (sub-dialogues or tutoring modes).

Based on our coding schemes, we have extracted dialogue models from these tutoring
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sessions that reflect the general underlying structure of the tutors’ conversations on

multiple levels (D’Mello, Olney, & Person, in press). These dialogue models are the

foundation for our approach to building an ITS because they outline what happens in an

expert tutoring conversation. However, because these models are structural they are an

incomplete model of expert human tutoring in two ways. First, our structural models do

not specify a dialogue move’s propositional content or the choice of words within it. For

example, our structural models specify dialogue move categories (e.g., question, rather

than a specific dialogue move such as “What is mitosis.”) Secondly, when alternatives are

possible our structural models only specify the alternatives but do not indicate which

alternative is most appropriate in a situation. For example, our structural models may

specify that the next tutor dialogue move should be a hint, prompt, or pump, but

selecting amongst them would require assessing a number of other dialogue features (e.g.,

the correctness of a student’s response, the student’s overall progress, etc.)

Resolution

In this chapter we describe our ongoing research efforts using our expert human

tutor data to create the expert Guru ITS using applied natural language processing

(ANLP) techniques, including natural language understanding, knowledge representation,

and natural language generation. These ANLP techniques allow us to fill in specific gaps

in our structural dialogue models and to create a functioning system. This chapter we will

primarily focus on the tools and methodologies behind creating an expert ITS, but our

ultimate goal is student learning. We believe that an expert ITS will enhance learning

outcomes beyond current ITS technology by using the particular tactics, actions, and

dialogue of expert human tutors. Therefore, the essence of our approach is to design

conversations between the Guru tutor and the student to promote learning.
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Expert Human Tutoring

In order to model the conversation of an expert tutor, a corpus of expert human

tutoring is needed. However, the most current meta-analysis reveals that the majority of

human tutoring studies reported in peer-reviewed sources have primarily included

untrained or “typical” tutors (Cohen et al., 1982). Expert tutoring studies are

comparatively scarce, and such studies have included only a handful of expert tutors. In

this section we review the studies that are most frequently cited in the literature and note

some of the problems that have contributed to our lack of expert tutoring knowledge.

First, several studies fail to indicate how many expert tutors were included in the analyses

(Aronson, 2002; Fox, 1993; Derry & Lajoie, 1993; Lepper & Woolverton, 2002). Second,

although some studies have included five or six expert tutors (Derry & Potts, 1998;

Graesser, Person, Harter, et al., 2001; Lepper, Aspinwall, Mumme, & Chabay, 1990;

Lepper, Woolverton, Mumme, & Gurtner, 1993; VanLehn et al., 2007), the remaining

included only one or two experts (Shah, Evens, Michael, & Rovick, 2002; Evens,

Spitkovsky, Boyle, Michael, & Rovick, 1993; Glass, Kim, Evens, Michael, & Rovick, 1999;

Lajoie, Faremo, & Wiseman, 2001; Jordan & Siler, 2002). These missing and negligible

numbers call into question whether the findings generalize to all expert tutors. Third,

many of the studies include the same sample of expert tutors. For example, the tutors

included in Graesser et al. (2001), Jordan and Siler (2002), and VanLehn et al. (2007) are

the same five tutors. Fourth, a significant number of the studies have focused on the

motivational aspects of tutors rather than on the cognitive and pedagogical features that

contribute to student learning (e.g., the studies by Mark Lepper and colleagues). A fifth

problem with these studies involves the credentials of the experts. That is, it is unclear as

to what constitutes an expert tutor. In some of the studies, the expert tutors are Ph.D.s

with extensive teaching and/or tutoring experience (Evens et al., 1993; Glass et al., 1999;

Graesser et al., 2001; Jordan & Siler, 2002), whereas in others the experts are graduate
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students who worked in tutoring centers (Fox, 1993). These are just some of the problems

that warranted our recent collection of expert human tutoring data.

Our expert human tutoring corpus is the largest collection of expert tutoring

sessions to date. Our expert human tutoring corpus includes twelve expert math and

science tutors who were screened carefully and recruited to participate in the project. The

focus on math and science reflects the emphasis on STEM (science, technology,

engineering, and mathematics) by the U.S. government. All experts had a minimum of

five years of one-to-one tutoring experience, a secondary teaching license, a degree in the

subject that they tutor, an outstanding reputation with schools as a private tutor, and an

effective track record (i.e., students who work with these tutors show marked improvement

in the subject areas for which they receive tutoring). The students in our study were all

students having difficulty in a science or math course and were either recommended for

tutoring by school personnel or sought professional tutoring help. Fifty one-hour tutoring

sessions were videotaped, transcribed, and annotated.

Three coding schemes were developed to classify all tutor and student dialogue

moves. A dialogue move was either a speech act, an action (e.g., student reads aloud), or

a qualitative contribution made by a student (e.g., partial or vague answer). Multiple

dialogue moves can occur within one conversational turn. The Tutor Pedagogical Moves

scheme includes 14 categories and was inspired by previous tutoring research on

pedagogical strategies and dialogue moves (Cromley & Azevedo, 2005; Graesser et al.,

1995). The Tutor Motivational Moves scheme includes 8 categories that were either

reported previously in the literature or were extrapolated from the INSPIRE model

(Lepper & Woolverton, 2002). All tutor moves were classified as either motivational or

pedagogical and then assigned to a particular pedagogical or motivational category. A

coding scheme was also developed to classify all student dialogue moves into 16 categories.

Four trained judges coded the 50 transcripts on the three dialogue moves schemes. To
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determine the reliability of their judgments, Cohens Kappas were computed (.96 for Tutor

Motivational Scheme; .88 for Tutor Pedagogical Scheme, and .88 for Student Move

Scheme). Approximately 57,000 dialogue moves were coded. The Tutor Motivational and

Pedagogical Schemes are presented in Table 1 and Table 2.

[TABLE 1 AND TABLE 2 ABOUT HERE]

We also developed a coding scheme for larger units of the tutoring session that we

call modes (Cade, Copeland, Person, & D’Mello, 2008). Two trained judges coded the 50

transcripts and found eight modes, including Introduction, Lecture, Highlighting,

Modeling, Scaffolding, Fading, Off Topic, and Conclusion, with Kappa above .80 for each

mode. Each mode can be characterized by a specific kind of interaction. For example,

Introduction contains greetings and establishes an agenda, Lecture is predominantly direct

instruction, Highlighting draws attention to a problem solving step, Modeling occurs when

the tutor works a problem for the student, during Scaffolding the tutor and student solve

a problem together, Fading involves the student predominantly solving a problem alone,

Off Topic contains non-tutoring related conversation, and Conclusion mirrors Introduction

as the social glue at the end of the session. An individual mode can span dozens of turns,

and so represents a major unit in the structure of a tutoring session.

We have recently analyzed the expert human tutoring corpus using data mining

techniques and have discovered significant patterns of dialogue moves (D’Mello et al., in

press). In that work we determined two-step transitions, i.e., move to move, that occured

at rates significantly greater than chance and had effect sizes greater than the median

effect size. In Lecture, for example, only 34 transitions met these criteria; a visual

inspection revealed several meaningful dialogue move clusters. The first Lecture cluster is

the information transmission cluster, in which the tutor primarily engages in direct

instruction with superficial monitoring of student attention and understanding. The

second Lecture cluster is the information elicitation cluster where the tutor elicits
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information from the student using direct questioning, e.g. forced choice, prompts, pumps,

etc., the student tries to answer, and the tutor gives feedback on the student’s answer.

Additional Lecture clusters include an off-topic cluster, e.g. humor, and a

student-initiated questioning cluster, e.g. common ground questions and knowledge deficit

questions. Each cluster is essentially a subgraph, ie. a smaller graph contained within the

larger graph defining Lecture; alternatively, one can view each subgraph as a subdialogue

nested in the larger Lecture dialogue.

Under the type of analysis performed by D’Mello et al. (in press), the expert human

tutoring corpus provides a specification for Guru on multiple levels. On a mode level, we

know that sessions typically shift from Introduction to Lecture to Scaffolding. So at the

highest level, we can consider tutorial conversations in terms of mode transitions. Within

each mode, we can use dialogue move transition information to both extract larger

subdialogues (clusters) and to estimate the most probable tutor response to any given

student move within a subdialogue. So our analysis of the expert human tutoring corpus

has given use three levels of structure: mode, subdialogue, and move. Additionally the

expert human tutoring corpus can help us with generating the content of some dialogue

moves, since we can inspect the corpus to see the possible ways a particular dialogue move

is manifested, e.g. Positive Feedback (“Yes”, “Correct”, “That’s right”, etc.).

While the expert human tutoring corpus is a useful description of what expert

tutors do, there are many blanks that must be filled in so that the corpus can be used to

build a functioning ITS. For example, when a tutor gives feedback, positive and negative

feedback are not equally probable. Instead the tutor’s response is based on some

assessment of the student’s knowledge, and the type of feedback is constrained by this

assessment. Likewise when tutorial dialogue is generated, it cannot be probabilistically

sampled except in a few cases such as unelaborated feedback, e.g., “Good job.” Imagine

how incoherent the tutor would be if we randomly sampled direct instruction moves from
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50 different tutoring sessions! Instead the tutor’s dialogue moves, while guided by the

mode, subdialogue, and move transitions of the corpus, must be generated from some

underlying knowledge representation that reflects the structure of the domain being

tutored. In a nutshell, the problem of building a conversational ITS is no less than solving

problems of natural language understanding (required to assess the student) and natural

language generation (to produce tutor responses), both of which must be mediated by

some knowledge representation of the domain (to provide coherent instruction). In the

rest of the chapter, we describe our approaches behind these ANLP components for Guru.

Knowledge Representation

We begin our discussion of Guru’s ANLP components with knowledge

representation. Because both natural language understanding and generation are

mediated by a knowledge representation, it is necessary to describe the representation

before describing how it is used for understanding and generation. But before that, it is

worthwhile to review how knowledge representation is characterized by the intelligent

tutoring system community. The task demands of an ITS system, namely modeling

expertise and modeling student knowledge, supply constraints on the properties of a useful

knowledge representation.

In an ITS, modeling of expertise and modeling of student knowledge are typically

called the domain model and the student model, respectively (Beck, Stern, & Haugsjaa,

1996). A domain model represents expertise in a domain, i.e. the relevant knowledge in

that domain and its organization, which is often geared either towards problem solving or

explanation. While it is beyond the scope of this chapter to describe the many differences

among various ITS domain models, what they share in common is that they are typically

structured to make tasks in the ITS more straightforward, whether that task is selecting

the next problem for the student to solve or assessing the correctness of a student’s
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answer. Student modeling likewise has many implementations, and each of these

implementations has its own underlying representation of the domain (Ohlsson, 1992). For

example, overlay student models typically assume a domain decomposition where chunks

of content can be marked as understood by the student, rather like checking items off a

list. An overlay student model is so called because it lays over the domain model in a

rather transparent way, i.e. each element of the domain model is on the checklist for the

overlay student model. Overlay models are one of the more popular student models in ITS

research, and our current choice of student model for Guru.

Clearly an overlay student model first requires a domain model. However, the

creation of a domain model is sufficiently challenging that it requires special authoring

tools to accomplish and still requires many man-hours to develop (Murray, 1998; Corbett,

2002; Aleven, McLaren, Sewall, & Koedinger, 2006). Thus in Guru we have been

particularly interested in unsupervised and semi-supervised knowledge representation

techniques that can extract semantic representations from raw text. The two primary

techniques that we have used to date are latent semantic analysis (LSA) and concept map

extraction, which we will briefly describe in turn.

Latent semantic analysis (LSA) is a machine learning technique capable of

representing world knowledge (Deerwester, Dumais, Furnas, Landauer, & Harshman,

1990; Landauer & Dumais, 1997; Landauer, McNamara, Dennis, & Kintsch, 2007), see

also Chapter X this volume. LSA has been shown to closely approximate vocabulary

acquisition in children (Landauer & Dumais, 1997), grade undergraduate essays as reliably

as graduate students (Foltz, Gilliam, & Kendall, 2000), and understand student

contributions in tutorial dialogue (Graesser et al., 2000; Olde, Franceschetti, Karnavat, &

Graesser, 2002). LSA works by projecting words into a vector space commonly referred to

as an LSA space, which is constructed in a two step process (Martin & Berry, 2007). The

first step is the construction of a term-document matrix which contains word frequencies
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across a collection of documents. In the term-document matrix, the value at row i column

j is the number of times term i appeared in document j. Weighting schemes can further

be applied to this matrix to improve task performance (Dumais, 1991). In the second

step, the term-document matrix is subjected to singular value decomposition, a common

technique in linear algebra. The effect of singular value decomposition is to create a

reduced version of the original term-document matrix, in which the first n dimensions of

the reduced matrix are an optimal approximation of the original matrix in a least-squares

sense (Eckart & Young, 1936).

The resulting LSA space can be used to compare the similarity of two words by

comparing the similarity of their corresponding row vectors. The standard comparison

metric is cosine, which returns a value between -1 and +1 in theory, but between 0 and 1

in practice (since the original cell counts are positive). Thus LSA returns a cosine value of

1 for identical words and a low non-zero cosine for unrelated words. In a similar way,

larger collections of words may be compared to other large collections by summing the

corresponding word vectors for each collection. Since the sum of a collection of vectors is

another vector of the same dimension, the same cosine metric can be used. Typically in

tutorial dialogue, LSA would be used to compare a student’s response with an expected

response, i.e. an item in the domain model, which would be considered satisfied if the

cosine were above a certain threshold. We will elaborate on this approach in the following

section on natural language understanding.

Guru’s second knowledge representation approach is concept mapping. Concept

maps have been used by education, artificial intelligence, and psychological communities

for decades, and as a result there are many different kinds of concept maps (Fisher,

Wandersee, & Moody, 2000), so what we mean by “concept map” requires some

clarification. Generally speaking, a concept map consists of a set of nodes (concepts) and

edges (relations) describing a core concept or answering a core question (Novak & Canas,
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2006). A given pair of nodes connected by an edge can be called a triple, i.e. a start node,

edge relation, and end node. Our unique concept map definition combines previous work

in both the psychology and education literatures (Graesser & Franklin, 1990; Gordon,

Schmierer, & Gill, 1993; Fisher et al., 2000). From the education literature, we adopt a

node formulation largely consistent with the SemNet map (Fisher et al., 2000). In our

representation, only key terms can be the start of a triple (equivalently the center of a

map). End nodes can contain key terms, other words, or complete propositions. This

leads to maps with one layer of links radiating out of a core concept. From the psychology

literature, we adopt an edge formulation largely consistent with conceptual graphs

(Graesser & Franklin, 1990; Gordon et al., 1993). Our representation uses a restricted set

of labeled edges that account for a large percentage of relationships. A restricted set is

advantageous because having a prescribed set of edges facilitates both generating

questions and answering questions from the map (Graesser & Franklin, 1990; Gordon et

al., 1993). An example concept map with these specifications is shown in Figure 1.

[FIGURE 1 ABOUT HERE]

We recently developed a procedure for extracting concept maps from a textbook

using a semantic parser and related post processing (Olney, in press). We use the LTH

SRL Parser (Johansson & Nugues, 2008) to parse the textbook, outputting a dependency

parse annotated with semantic roles derived from Propbank (Palmer, Gildea, &

Kingsbury, 2005) and Nombank (Meyers et al., 2004). Thus the parse has a wealth of

information including part of speech, lemma, head, relation to the head, verbal predicates,

nominal predicates, and associated arguments.

Table 3 displays parse output for an example sentence, slightly simplified for length

considerations. The root of the sentence is is, whose head is token 0 (the implied root

token) and whose dependents are abdomen and part, the subject and predicate,

respectively. Predicate part.01, being a noun, refers to the Nombank predicate part,
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roleset 1. This predicate has a single argument of type A1, i.e. theme, which is the phrase

dominated by of, i.e. of an arthropod’s body. Predicate body.03 refers to Nombank

predicate body, roleset 3 and also has a single argument of type A1, arthropod, dominating

the phrase an arthropod’s. Potentially each of these semantic predicates represents a

relation, e.g. has-part, and the syntactic information in the parse also suggests relations,

e.g. abdomen is-a.

[TABLE 3 ABOUT HERE]

For each syntactic or semantic relation found by the parser, we require that a

triple’s start node be a key term in our domain. We define these as terms in the glossary

and index of the textbook. Depending on the edge type, the edges are either handled

syntactically or by using the semantic information returned by Propbank and Nombank.

For example, edges that are handled syntactically include is-a via the be main verb,

has-property via adjectival modifiers of noun phrases, and location via prepositions.

Semantic edges derived from Propbank and Nombank require examination of multiple

features including the lexical form of the predicate, the gloss for the roleset of the

predicate, the label given to the argument, and the gloss given to the argument. These

features are input to a manually designed decision tree, which inspects the features by

priority and assigns a relation. We describe this process as semi-supervised because the

node and edge definitions have been manually defined for our domain, but the rest of the

procedure is unsupervised.

Natural Language Understanding

Now that we have defined our knowledge representations, we can describe how they

are used in Guru’s ANLP tasks. In Guru, and in an ITS generally, the problem of natural

language understanding is to map a student’s utterance into a representation aligned with

the domain and student models. In this way the ITS can determine both if the student’s
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input is correct or incorrect and what should be discussed next as a result. In Guru we are

using both LSA and conceptual graphs to address these issues. Each has its strengths and

weaknesses, which we describe in turn.

As mentioned previously, LSA has been used to assess student contributions in

tutorial dialogue (Graesser, Chipman, Haynes, & Olney, 2005; VanLehn et al., 2007;

Olney, 2009b). These approaches use a domain model based on a combination of a

curriculum script, which must be authored by hand, and LSA. The curriculum script

contains all of the domain-dependent dialogue to be spoken by the tutor, as well as

expected answers, i.e. correct answers, that a student should say in response to a

question. The goal of the tutor is to get the student to produce a multi-part explanation

in response to a problem posed by the tutor. Student answers are compared to expected

answers using LSA, which returns a score roughly between 0 and 1 indicating the degree

of similarity (0 not similar; 1 identical) between the student’s answer and the expected

answer. The problem posed by the tutor is considered answered when the LSA match

between student answers and the expected answers crosses a given threshold, e.g. 0.7.

LSA is a valuable technique as an approximate match mechanism. However, LSA is

a bag of words technique, so it cannot handle word order. One way of understanding this

is to realize that the sum of vectors does not change when vectors are added in a different

order. For a high-precision natural language understanding system, insensitivity to word

order is a problem: even a novice human tutor knows that “John likes Mary” and “Mary

likes John” have two different meanings. However the cosine between these sentences is 1

(complete similarity).

We have addressed the problem of word order in LSA in our recent work (Olney,

2006, 2007b, 2009a), which has resulted in a new algorithm for creating LSA spaces, i.e.

singular value decomposition, within the tradition of algorithms proposed by Cullum and

Willoughby (2002). The new algorithm allows for much larger input matrices to be
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processed than traditional algorithms used for this process (Berry, 1992). As a result, an

LSA-like space can be constructed using a mixture of words and multi-word units

(n-grams) which would exceed the memory capacity of a conventional computer. Because

the multi-word units are inherently ordered, their vectors may be added in the standard

LSA fashion but the underlying order is preserved. This allows us to assess student

utterances with higher precision than is possible with traditional LSA, though we also

note that there are situations in which word order has a negligible effect (Olney, 2009a;

Landauer, 2007).

In addition, we and colleagues have developed an extension to LSA that makes use

of an orthonormal basis of LSA vectors (Graesser et al., 2007; Hu, Cai, Wiemer-Hastings,

Graesser, & McNamara, 2007; Olney & Cai, 2005a, 2005b; Olney, 2007a). Each vector in

the basis is linearly independent of the others. Linear independence means that the

orthonormal basis representation preserves its constituent components, the individual

word vectors. Although this approach does not explicitly address the word order problem,

it does allow LSA to make finer discriminations. As a result, we have used the

orthonormal basis technique to segment dialogue, detect entailments, summarize, and

understand tutorial dialogue in ways that consistently outperform traditional LSA.

Concept maps offer another way of achieving high precision in natural language

understanding. Recall from our previous discussion that a concept map domain model

consists of a large set of triples where the start node is a key term in our domain, the edge

is from a restricted and pedagogically relevant set of relations, and the end node is an

arbitrary proposition. Rather than mix all these components in a single bag of words,

concept maps allow us to keep them separate, with pedagogically interesting implications.

With a concept map, when one element of a triple is incorrect in a student’s

utterance, we can identify what that component is and respond accordingly. First, if only

the student’s start node is incorrect (and the other elements correct), we can recognize
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that the student likely has not adequately discriminated the actual start node of the triple

and the start node in their utterance. For example, if the student’s utterance contains the

triple white blood cell has-consequence delivers oxygen, then we can identify that

this student knows something about red blood cells that is being incorrectly generalized to

white blood cells. This is quite different from the second case of incorrect edge relation,

where the student fails to understand the relation between two items, e.g. red blood

cell lacks delivers oxygen. Finally, the student can know that a key term has a proper

edge relation, but confuses the proposition related, e.g. red blood cell has-property

found in plants, which is not a property of red blood cells.

Depending on the type of error the student makes, we can differentially respond. In

the case of an incorrect start node, we can contrast the student’s start node with the

correct one, in order to teach them finer discrimination. In the second case, we can

highlight the relationship that the student has incorrect, explain what that relationship

means, and help the student understand the proper relationship. In the final case, it’s

likely that the student has very little background knowledge on the topic, so we might

engage in extended direct instruction. These are just examples of possible strategies, but

the point is that with a concept map representation, we can make finer discriminations of

what the student’s error is and respond more appropriately than we can with a bag of

words approach, even an n-gram approach with partial order.

We are currently exploring fusions of LSA with concept maps. There are two

reasons to consider this type of hybrid approach. The first is computational efficiency.

The LTH parser requires significant memory resources to operate and is difficult to run on

a computer with 4 gigabytes or less of main memory. Therefore one hybrid approach

would be to use LSA to try to identify the elements of a triple in a student’s explanation.

This approach would also allow the student to use synonyms to express the same ideas

without penalty. The problem with this kind of hybrid is that it sacrifices some of the
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increased precision that can be gained from concept maps as described above, since LSA is

more capable of checking that the elements of a triple are present in a student utterance

than for matching words to specific elements. A second kind of hybrid approach combines

the LTH parser with LSA. In this approach the student’s utterance is first parsed with the

LTH parser. Then each element of the triple, as extracted from the student’s utterance, is

compared via LSA with the expected triple. This allows the precision of the concept map

to be augmented with LSA’s flexibility: students can use related words rather than exact

words to satisfy the triple. We are currently exploring both approaches.

Natural Language Gneration

In Guru, natural language generation maps a knowledge representation to a tutor’s

utterance. This is a two step process in which we need to decide not only what category of

response to make, e.g. a hint, but also the specific text constituting the hint, as in Table

2. The first step, selection of the move category, is based on our three models of dialogue

structure. The second step, generating the text of the move, is based on our domain

model and student model.

For the first step, we described the three levels of dialogue model extracted from the

expert human tutoring corpus in a previous section, so we only briefly describe how these

are incorporated into Guru. In a nutshell, dialogue management performs the function of

deciding what a tutor should say next. Of course what is said next is not completely

arbitrary; it is dependent on what the tutor and student have been talking about.

Typically, this is formulated in terms of planning (Freedman, 1996; Khuwaja, Evens,

Rovick, & Michael, 1994; Zinn, Moore, & Core, 2002). Framed as a planning problem, the

decision of what to say next depends on finding the sequence of dialogue moves the tutor

can make that will best accomplish the goal of student understanding. Our previous

dialogue management research (Graesser et al., 2001; Olney, 2009b) leads us to believe
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that Prolog, a declarative language that has been widely used for artificial intelligence

research and cutting-edge dialogue systems (Bratko, 1986; Larsson & Traum, 2000; Zinn

et al., 2002) is an excellent framework for incorporating structural dialogue models into an

intelligent tutoring system.

In the second step of our natural language generation process, we must transform a

given dialogue move category into speakable text. The two different kinds of knowledge

representation we have described, LSA and concept maps, are not equally suited to

natural language generation. We first consider LSA, wherein the problem of generating

text from a knowledge representation is essentially mapping an LSA vector to some

ordered set of words. Typically, an LSA vector representation is one-way, so one cannot

reverse engineer a sentence representation to find its constituent words. One way to

understand this problem is to consider an arbitrary number, e.g. 42, and the problem of

determining what numbers were added together to reach this number. Clearly there are

many possible numbers that may be added to reach 42; likewise there are many possible

vectors that may be added to reach a particular target vector. Thus generating ordered

text from LSA vectors does not seem like a promising approach at this point.

Concept maps, on the other hand, have been previously used to generate text. Our

concept map representation is very close to previous work in psychology that uses a fixed

set of edge relations (Gordon et al., 1993; Graesser & Franklin, 1990). A particular

advantage of limiting relations to a set of categories is that the categories can then be set

into correspondence with certain question types, e.g. definitional, causal consequent, and

procedural, for both the purposes of answering questions (Graesser & Franklin, 1990) as

well as generating them (Gordon et al., 1993). For example, red blood cell

has-consequence delivers oxygen can be used to generate the questions “What causes

oxygen to be delivered,” “What does a red blood cell do,” or “What can you say about a

red blood cell and oxygen” depending on whether we want to query the start node, the
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end node, or the edge relation between them respectively.

A related approach is currently used in Betty’s Brain, an ITS in the “learning by

teaching” paradigm (Biswas, Schwartz, Leelawong, & Vye, 2005; Leelawong & Biswas,

2008). Students teach an agent, Betty, whose brain is reified as a causal concept map with

additional hierarchical (i.e. is-a) and descriptive relations (i.e. has-property). Once

created, the concept map can be queried by the student, or even allow Betty to “take” a

quiz, using a qualitative reasoning algorithm. In the same way that we describe the

generation of questions from concept maps, Betty can describe her reasoning by reading

off the relationships in the map. However, a major difference is that we are generating

complex questions rather than simply reading off relations. Thus our approach requires

greater sophistication with respect to the syntax and morphology of constituent elements.

In order to specifically target start node, edge relation, or end node in our questions,

we are using SimpleNLG (Gatt & Reiter, 2009), a Java library for natural language

generation tasks. SimpleNLG is representation agnostic, so it is fairly straightforward to

use it to generate question forms based on our concept maps. This is done using a

different strategy for each of the dialogue moves listed in Table 2. Additionally, we make

use of the context free prompts provided by Chi, Siler, Jeong, Yamauchi, and Hausmann

(2001), which we slightly modify to create templates for question generation. For example,

we can convert Chi et al.’s “Any thoughts about that sentence?” to “Any thoughts about

START?”, where START is the start node of a triple, e.g. red blood cell. This is a

useful template for a pump dialogue move. In a similar way, Chi et al.’s context free

prompts offer useful templates for the hints, prompts, and pumps in Table 2. However,

not all of the moves in Table 2 can be so easily generated. We are currently investigating

other strategies for moves like forced choice that rely on traversal of the concept map

representation. For example, both red and white blood cells are a type of cell, but only

one delivers oxygen. So the forced choice “What delivers oxygen, a red blood cell or a
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white blood cell” can be generated by starting at red blood cell, traversing the is-a link

to cell, finding white blood cell as another type of cell, and then confirming that it

does not also have the property delivers oxygen. Given our current results, the use of

concept maps for generating pedagogical questions appears very promising.

Conclusion

This chapter described our previous and ongoing work in the dialogue design of the

Guru ITS, based on our analyses of expert human tutorial dialogues. Our approach is

corpus-based, driven by our extensive collection of expert human tutoring dialogues.

Through data mining techniques, we have extracted models of dialogue structure at

multiple grain sizes. These dialogue models are the foundation for our approach to

building an intelligent tutoring system because they outline what happens in an expert

tutoring conversation. However, because our models only represent a kind of “dialogue

syntax” they are an incomplete model of expert human tutoring.

The ANLP techniques for knowledge representation, natural language

understanding, and natural language generation that we have presented can be used to fill

in specific gaps in our structural models and to create a functioning system. Both LSA

and concept maps are useful knowledge representations with strengths and weaknesses for

natural language understanding: LSA is more forgiving of student input, while concept

maps can finely discriminate both what is correct and incorrect in a student’s answer. For

natural language generation, on the other hand, concept maps are proving to be much

more useful than LSA. Not only can concept maps be used to generate questions aimed at

different components of a triple, but they can also be used to generate questions like

forced choice that combine multiple triples.

Although we have given an overview of many of Guru’s key ANLP components,

development of an ITS is a complex task, involving many different kinds of dependencies
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that constrain the system. The three major sources of constraints are the expert tutoring

corpus, the ANLP components themselves, and the end users. Thus there are many other

aspects to the Guru ITS that are beyond the scope of this chapter, such as curriculum

development, usability studies, and development methodologies that are equally important

in the creation of an intelligent tutoring system. These and other factors are extremely

important if the ultimate goal of enhanced learning outcomes is to be realized.
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Table 1

Tutor Motivational Moves

Move Category Example

Attribution Acknowledgment that’s easy

Conversational Ok alrighty

General Motivational Statement cause you’re such a good student I just enjoy you and are . . .

Humor so you’re going to have kids and you go “oh I hope he looks like . . .

Negative Feedback no no no no

Negative Feedback Elaborated actually no you’re gonna have some potential energy there too . . .

Neutral Feedback not quite

Neutral Feedback Elaborated mm you’re thinking of vertical vertical angles and stuff like that

Positive Feedback very good alright

Positive Feedback Elaborated very good because everything is on top

Repetition negative 2

Solidarity Statement let’s do it
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Table 2

Tutor Pedagogical Moves

Move Category Example

Counter Example not multiply we’ll add in the area of the bases right

Comprehension Gauging Question you see what I’m saying

Direct Instruction/Explanation so that’s your lateral area

Example so as a male you will undergo meiosis and your gametes will . . .

Forced Choice so if we’re trying to simplify are we going bigger or smaller

Hint but now we’re not gonna add this many dots right because now . . .

New Problem let’s look at this example here it’s called expansion of the third . . .

Other does he give you a time limit

Paraphrase you take out an r squared and you’d have 4 minus pi

Provide Correct Answer first outer inner last

Preview we’re going to talk about how atoms ions whatever come . . .

Prompt can we simplify the radical of 9 is simply

Pump and then what do we do

Simplified Problem what inside the cell would have an electrical charge

Summary so that’s all there is to it so you got a circular chromosome so. . .
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Table 3

A simplified parse

Id Form Lemma POS Head Dependency Relation Predicate Arg 1 Arg 2

1 abdomen abdomen NN 2 SBJ

2 is be VBZ 0 ROOT

3 a DT 5 NMOD

4 posterior posterior JJ 5 NMOD

5 part part NN 2 PRD part.01

6 of IN 5 NMOD A1

7 an DT 8 NMOD

8 arthropod arthropod NN 10 NMOD A1

9 s POS 8 SUFFIX

10 body body NN 6 PMOD body.03

11 . . 2 P
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Figure Captions

Figure 1. A concept map radiating from zygote
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