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Abstract. The development of large-scale automatic classroom dialog analysis 

systems requires accurate speech-to-text translation. A variety of automatic 

speech recognition (ASR) engines were evaluated for this purpose. Recordings 

of teachers in noisy classrooms were used for testing. In comparing ASR results, 

Google Speech and Bing Speech were more accurate with word accuracy scores 

of 0.56 for Google and 0.52 for Bing compared to 0.41 for AT&T Watson, 0.08 

for Microsoft, 0.14 for Sphinx with the HUB4 model, and 0.00 for Sphinx with 

the WSJ model. Further analysis revealed both Google and Bing engines were 

largely unaffected by speakers, speech class sessions, and speech characteristics. 

Bing results were validated across speakers in a laboratory study, and a method 

of improving Bing results is presented. Results provide a useful understanding of 

the capabilities of contemporary ASR engines in noisy classroom environments. 

Results also highlight a list of issues to be aware of when selecting an ASR engine 

for difficult speech recognition tasks.  
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1 Introduction 

Dialogic instruction, a form of classroom discourse focusing on the free exchange of 

ideas and open-ended discussion between teachers and students, has been linked to key 

constructs of learning such as student engagement [1] and deep comprehension [2]. 

Although classroom discussion is generally considered beneficial, actual use of appro-

priate dialogic instructional strategies in classrooms varies widely. Recent research in 

teacher education has demonstrated the importance of careful measurement and assess-

ment of dialogic practices in promoting changes in teacher practice [3]. A long-term 

goal of the present research is to facilitate fast and efficient assessment of classroom 

discourse processes and outcomes for use in teacher professional development.  

Motivation. Previously, large-scale efforts to improve classroom discourse have 

been conducted using complex, labor-intensive, and expensive excursions into class-

rooms. Nystrand and Gamoran [4, 5] studied thousands of students across hundreds of 

classroom observations of middle and high school English Language Arts classes. They 



found positive effects on student learning from the overall dialogic quality of discourse. 

However, the sheer number of human coders required makes such studies cost prohib-

itive. The feasibility of such large-scale deployment has been stretched to its limits. 

With modern technology, a new approach consisting of the transcription of recorded 

in-class audio through automatic speech recognition (ASR), in combination with data 

mining and natural language understanding to automate the coding of classroom dis-

course, might finally be feasible.  

We are addressing automated classroom dialogic analysis with CLASS 5. CLASS 5 

is intended to automate dialogic instructional feedback through a large-scale implemen-

tation of Nystrand’s coding scheme [4, 5], which focuses on the nature of questions 

involved in classroom discussion. Specifically, five properties of question events are 

coded: authenticity, uptake, level of evaluation, cognitive level, and question source. 

Nystrand et al. reported that among these variables, authenticity and uptake are the most 

important properties affecting student achievement [5, 6]. Previously, coders would 

begin by sitting in classrooms and recording when and what types of questions were 

asked followed by revision in the lab. CLASS 5 is intended to automate this task with 

an emphasis on recognizing different question events. 

ASR is an important first step in recognizing question events from classroom audio 

because it enables the application of text-based machine learning techniques. However, 

speech recognition in noisy environments remains a challenging research problem, and 

most available ASR technologies are designed for desktop dictation in a quiet office 

environment. To determine the suitability of existing ASR technologies for CLASS 5, 

we analyze several out-of-the-box ASR solutions that do not require training on speak-

ers and do not require any domain-specific knowledge. We focus on dialogic questions 

asked by teachers because they are highly correlated with student achievement [4]. This 

paper looks to identify which ASR systems are best suited for large-scale implementa-

tion of audio transcription in classrooms.  

Related Work. Wang et. al. [7] experimented with real classroom audio in a way 

that could be adapted to provide feedback for teachers. They built classifiers to identify 

if 30-second segments of audio corresponded to discussion, lecture, or group work. 

Audio data was collected using LENA [8], which was adapted to report when either 

teachers are speaking, students are speaking, speech is overlapping, or there is silence; 

there was no attempt at ASR. Although Wang et. al. [7] reported success classifying 

classroom discourse at course-grained levels, their audio solution only provided infor-

mation on who was speaking, while coding of question events requires knowing what 

was said. 

Within the AIED community, much of the work on spoken-language technologies 

has focused on one-on-one interactions in intelligent tutoring systems (ITSs). For ex-

ample, Litman and Silliman [9] developed ITSPOKE, a physics tutor that engages stu-

dents in spoken discussion to correct errors and prompt student self-explanation. 

Mostow and Aist [10] built a reading tutor called Project LISTEN to improve oral read-

ing and comprehension. Schultz et. al. [11] created a spoken conversational tutor archi-

tecture called SCoT. Ward et. al. [12] has developed a conversational ITS called My 

Science Tutor (MyST) for 3rd, 4th, and 5th grade students. Finally, Johnson and Valente 



[13] created a spoken dialog tutor to teach language and cultural skills. Despite impres-

sive advances in conversational tutoring, the focus of these systems has been one-on-

one human-computer interactions with customized domain-specific desktop oriented 

ASR approaches. The question of whether these ASR solutions generalize in noisy 

classroom environments remains unanswered.  

There have been some efforts to quantify contemporary ASR systems, albeit outside 

of classroom contexts. Morbini et al. [14] recently reviewed some of today’s freely 

available ASR engines. They tested five ASR engines including Google Speech, Pock-

etsphinx, Apple, AT&T Watson, and Otosense-Kaldi. Tests were based on recordings 

obtained from six different spoken dialog systems, or systems where computers con-

verse with humans in a variety of settings. These settings range from casual museum 

visitors speaking into a mounted directional microphone to trained demonstrators 

speaking into headset microphones. Their analyses focused on the strengths and weak-

nesses of the ASR engine’s performance across different dialog systems. While their 

results provided a useful table of features associated with each engine, the authors con-

cluded there was no single best ASR engine for all dialog systems. Their results did not 

address variable conditions that are often out of the developer’s control, such as vocab-

ulary domain. Furthermore, although the methods used to record audio were docu-

mented the quality and clarity of this audio were unreported. Thus, no inference can be 

drawn about which ASR engine would perform best for untested applications, such as 

transcribing naturalistic classroom discourse, thereby motivating the present study. 

Contribution and Novelty. The present study provides, for the first time, a compar-

ative evaluation and analysis of contemporary ASR engines for audio recordings from 

noisy classroom environments. The emphasis is on studying the accuracy of ASR en-

gines on recordings of mic’ed teacher audio as they go about their normal classroom 

routines. We focus on teacher audio because dialogic instruction can be automatically 

coded using only teacher questions [15]. In addition to comparing transcription accu-

racy of five ASR systems, detailed analyses are performed on the two best-performing 

systems. The most effective ASR engine from the classroom study is validated in a 

follow-up laboratory study with more speaker variability. Although this work is done 

within the context of a specific research project (the development of CLASS 5), accu-

rate ASR is important for many tasks. Taking a foundational look at what is possible 

for today’s ASR systems in noisy classroom environments has implications for AIED 

researchers interested in developing other classroom-based spoken-language technolo-

gies or scaling up existing projects.  

2 Classroom Recording Study 

2.1 Method 

Data Collection. Audio recordings were collected at a rural Wisconsin middle school 

during literature, language arts, and civics classes. The recordings were of three differ-

ent teachers: two males – Speaker 1 and Speaker 2 – and one female – Speaker 3. The 

recordings span classes of about 45 minutes each on 9 separate days over a period of 3-



4 months. Due to the occasional missed session, classroom change, or technical prob-

lem, a total of 21 of these classroom recordings were available for analysis here. During 

each class session, teachers wore a Samson AirLine 77 ‘True Diversity’ UHF wireless 

headset unidirectional microphone that recorded their speech, with the headset hard-

ware gain adjusted to maximum. Audio files were saved in 16 kHz, 16-bit mono .wav 

format. Teachers were recorded naturalistically as they taught their class as usual.  

Two observers trained in Nystrand et. al.’s dialogic coding technique for audio an-

notation and classification [4, 16] were present in the classroom during recording. Ob-

servers marked teacher’s dialogic questions with start and stop times as the class pro-

gressed, and later reviewed the questions for accuracy. Audio of teacher questions was 

then extracted from the recordings and saved as individual .wav files by sectioning the 

audio using the observers’ labeled start and stop times. In total, there were 530 ques-

tions obtained from teacher speech. Table 1 presents information about the amount of 

time teachers spent asking questions (in seconds), mean verbosity (number of words in 

a question), mean duration (number of seconds taken to ask a question), mean speech 

rate (number of words per second), and maximum silence (longest pause in the middle 

of the speech). In general, Speaker 1 and Speaker 2 asked more questions than Speaker 

3 and were more verbose. Speaker 3 had the slowest speech rate, while Speaker 2 tended 

to pause for the shortest amount of time when speaking.  

Table 1. Means of question characteristics (standard deviations in parentheses)  

Speaker N Verbosity 

(words) 

Question  

Duration (secs) 

Speech 

Rate(words/sec) 

Maximum  

Silence (secs) 

1 189 8.82 (6.06) 4.29 (2.29) 2.05 (0.79) 1.12 (0.52) 

2 250 10.93 (6.82) 4.10 (2.30) 2.88 (1.25) 0.86 (0.60) 

3 91 3.07 (2.48) 3.62 (1.60) 1.11 (0.89) 1.20 (0.64) 

 

ASR Engines. We evaluated five ASR engines: Google Speech [17], Bing Speech 

[18], AT&T Watson [19], Microsoft Speech SDK 5.1, and two variants of Sphinx 4 

[20]. Google Speech, Bing Speech, and AT&T Watson are query-oriented, cloud-based 

recognition systems primarily intended for web-queries on mobile devices (typically 

noisy conditions). Google Speech includes twenty-seven languages and dialects, Bing 

Speech includes seven languages, and AT&T Watson includes nineteen languages and 

has recognition contexts. Sphinx 4 is a flexible ASR that allows developers to incorpo-

rate their own custom models; however, we limited our analysis to prebuilt acoustic 

models derived from the Wall Street Journal (Sphinx-WSJ), trained on people reading 

the WSJ, and the English Broadcast News Speech (Sphinx-HUB4), trained on speech 

from real broadcast news. Microsoft Speech, integrated with Windows since Vista, as-

sociates a speech profile with a user and adapts to that user’s speaking style and audio 

environment. We eliminated this adaptive bias by creating a new untrained speech pro-

file for each recording date. We focus our efforts on these systems because they are 

freely available, except for Microsoft Speech (which requires a copy of Windows).  



Evaluation Procedure. We processed all recorded questions through the ASR en-

gines. We then compared the transcriptions that were output by the engines with ob-

server-generated transcriptions. Performance metrics were word accuracy (WAcc) and 

simple word overlap (SWO). WAcc is the complement of the standard ASR metric of 

word error rate (WER). (WAcc = 1 – WER). WER is calculated by dynamically align-

ing the ASR engine’s hypothesized transcript with the coder’s transcript and dividing 

the number of substitutions, insertions, and deletions required to transform the tran-

script into the hypothesis divided by the number of words in the transcript. SWO is the 

number of words that appear in both the computer-recognized speech and the human-

recognized speech divided by the total number of words in the human-recognized 

speech. WAcc preserves word order while SWO ignores it. WAcc is bounded on (-∞, 

1] while SWO is bounded on [0, 1]. For both metrics higher numbers indicate better 

performance.  

2.2 Results 

Overall ASR Accuracy Rates. Table 2 presents the mean WAcc and SWO by ASR. 

Here, the cloud-based ASR engines Google Speech and Bing Speech clearly outper-

formed the other engines. Google Speech performed 7.69% better than Bing Speech 

when word order was considered (WAcc metric), but Bing performed 3.33% better than 

Google when word order was ignored (SWO metric). Bing and Google WAcc was, 

respectively, 26.8% and 36.6%, higher than AT&T Watson. The Sphinx HUB4 model 

did show improvements over the WSJ model, but overall HUB4 accuracy was lower 

than Bing and Google, with a performance similar to Microsoft.  

Given their superior performance on the two key metrics, we focus subsequent anal-

yses on Google and Bing. Because WAcc was strongly correlated with SWO for both 

Bing (Pearson’s r = 0.792) and Google (r = 0.908), we focus on WAcc. 

Table 2. Mean accuracy by ASR (standard deviations in parentheses) 

ASR WAcc SWO 

Google Speech 0.56 (0.35) 0.60 (0.31) 

Bing Speech 0.52 (0.41) 0.62 (0.31) 

AT&T Watson 0.41 (0.48) 0.53 (0.31) 

Sphinx (HUB4) 0.14 (0.61) 0.32 (0.30) 

Microsoft 0.08 (0.70) 0.33 (0.31) 

Sphinx (WSJ) 0.00 (0.67) 0.27 (0.27) 

 

Error Types. On average, for Bing, 40% (SD = 36%) of the errors were substitutions 

(ASR substituted one word for another), 30% (SD = 36%) were deletions (ASR missed 

words), and 15% (SD = 26%) were insertions (ASR inserted words). For Google, 44% 

(SD = 36%) of errors were substitutions, 35% (SD = 36%) were deletions, and 8% (SD 

= 20%) were insertions. Thus, there were modest differences across ASR engines for 

substitution and deletion errors, and larger differences for insertion errors. 



WAcc by Individual Speaker. Small differences were found between speakers. The 

mean difference in average WAcc across pairs of speakers (i.e., average of Speaker 1 

vs. Speaker 2, Speaker 1 vs. Speaker 3, and Speaker 2 vs. Speaker 3) were quite small 

– 0.12 for Bing and 0.06 for Google. This suggests that these ASRs were mostly unaf-

fected by speaker variability, at least with respect to the teachers in our sample 

WAcc by Class Session. To quantify the consistency of the ASRs across class ses-

sions, we conducted a decomposition of variance in error rates within and between class 

observations [21]. For Bing, 3.8% of the variance in error rates lies between class ses-

sions; the vast majority of the variance in error rates was within-observations, across 

utterances. For Google, a similarly small percentage of variance lies between observa-

tions, only about 3.3% in these data. Thus, automatic speech recognition is largely in-

variant to the differences in instructional topic, etc. occurring in these data.  

WAcc by Speech Characteristics. We investigated the relationship between WAcc 

and the four speech characteristics listed in Table 1. Models that regressed WAcc on 

these four speech characteristics (using a stepwise feature selection method) explained 

2.6% of the variance for Google and 4.2% of the variance for Bing. The negligible 

variance explained in these models indicates Google and Bing were mostly immune to 

variation in speech characteristics. 

Confidence of ASR Hypotheses. Bing provides confidence estimates with its out-

put, thereby affording an additional analysis of Bing. We note mean WAcc scores of 

0.00, 0.35, 0.48, 0.65 for confidence levels of: rejected (N = 4), low (N = 59), medium 

(N = 284), and high (N = 183), respectively. Removing the rejections and the low con-

fidence questions resulted in a mean WAcc of 0.55 for the remaining 467 utterances, 

which reflects a small improvement over the overall WAcc of 0.52 reported in Table 1. 

The results were not more notable because confidence estimation itself was imperfect. 

Comparing Google and Bing. Table 3 provides a cross tabulation for questions 

recognized perfectly (WAcc = 1), completely incorrectly (WAcc <= 0), and in between 

(0 < WAcc < 1) across both ASRs. Bing and Google completely failed and succeeded 

for the same 28 and 30 questions, respectively. Interestingly, Google perfectly tran-

scribed 10 of the 78 questions that Bing completely failed to recognize, while Bing 

perfectly transcribed 16 of the 73 questions that Google completely failed to recognize. 

In general, Bing and Google’s WAcc scores were only modestly correlated (Pearson’s 

r = 0.306), which suggests that there may be advantages to combining them. 

Table 3. Cross tabulation of Bing and Google WAcc 

  Google 

WAcc <= 0 0 < WAcc < 1 WAcc = 1 

Bing WAcc <= 0 28 40 10 

0 < WAcc <1 29 325 29 

WAcc = 1 16 23 30 

 

Qualitative Analysis of Complete Failures. We performed a qualitative analysis 

on the questions for which both ASRs completely failed (WAcc <= 0) by listening to 

each audio file and noting potential causes of errors (See Table 4). The most common 



failure involved the teacher questioning a student by calling his or her name (e.g., 

“Marty?”) – both ASRs were equally susceptible to this issue. Another common failure, 

more so for Google than for Bing, occurred when the teacher was quizzing a student on 

specific vocabulary words that were either not in the ASR dictionaries or were rare 

enough to be unrecognizable without context (e.g., cacophony, despot). Bing often 

failed when audio was not perfectly segmented (e.g. the segmented audio file began in 

the middle of loud student speech), an inevitable byproduct of collecting audio in a 

noisy environment. Both ASRs experienced failure when questions were only one 

word, which typically occurred when students were quizzed on vocabulary. Google 

faltered when teachers rushed through questions. Bing experienced 19 complete fail-

ures when the teacher began a question but paused for a long interval before continuing 

with the question. Both recognizers failed when teachers asked implicit questions, such 

as where the teacher began a statement and paused for the student to complete the ut-

terance (“speaker one is…”). The recognizers struggled when teachers over-enunciated 

syllables, which occurred when presenting unfamiliar vocabulary to students. 

 

Table 4. Failure Analysis (Number of errors by category and ASR) 

Error Bing Google  Error Bing Google 

Student name 26 25  Rushed 5 18 

Vocabulary  11 21  Long Pause 19 0 

Imperfect Segmentation 23 12  Implicit question 4 6 

One word 12 13  Over enunciate 6 3 

  

WAcc Improvements by Eliminating Pauses for Bing. We identified 113 in-

stances with imperfect WAcc likely attributed to a long teacher pause, which negatively 

affected Bing but not Google, as indicated by the analysis of complete failures (see 

Table 4). To mitigate these failures, pauses were automatically identified and removed, 

and the resulting modified audio was rerun through Bing. Eliminating the silences 

raised mean WAcc from 0.30 (SD = 0.41) to 0.34 (SD = 0.58), eliminated all rejections, 

and raised the overall WAcc for Bing from 0.52 (SD = 40.1) to 0.53 (0.46) and SWO 

from 0.62 (SD = 0.31) to 0.65 (SD = 0.30). Removing the remaining low confidence 

instances increased Bing’s WAcc to 0.58 (SD = 0.43) and Bing’s SWO increased to 

0.71 (SD = 0.25). Thus, Bing’s WAcc was higher than Google’s overall WAcc.  

3 Laboratory Study on Reliability Across Speakers Using Bing 

Due to the logistics of data collection, the original classroom study only involved 3 

speakers. We therefore conducted a laboratory study with 28 speakers to test the relia-

bility of Bing across a larger number of speakers. We focused on Bing instead of 

Google because it has an easier to use application programming interface (API – details 

of which are not discussed here), it provides confidence scores, it resulted in WAcc 

performance equal to Google (after eliminating pauses and low confidence scores), and 

exhibits a SWO well above Google. 



Method. 13 male and 15 female for a total of 28 English-speaking undergraduate 

students were recruited. These participants were instructed to play the part of a teacher 

leading a discussion in a classroom. Participants read the teacher’s lines from tran-

scripts of classroom speech displayed on a computer screen. The students’ portions of 

the scripts were pre-recorded by an actor and automatically played in response to the 

participant’s speech. Participants proceeded through three scripts constructed from 

transcripts of three separate teachers. Script order was balanced across participants with 

a Latin Square. Participant speech was recorded using the same headset microphone as 

was used to record teachers in classrooms.  

Results. In total, 3057 recordings of dialog turns were obtained and submitted to 

Bing for recognition. Utterance-level mean WAcc was 0.60 (SD = 0.32), considerably 

higher than the previously reported Bing WAcc of 0.52 (SD 0.41), presumably because 

of the controlled laboratory environment. We performed a decomposition of variance 

analysis to quantify the variation in word error rates for Bing across participants. We 

found a small but non-trivial proportion of variance at the speaker level (ICC=.096). 

The standard deviation of the word error rates across speakers was 0.10 (about the grand 

mean of 0.61). The estimated confidence interval for the ICC suggests that as much as 

15% of the variance in word error rates is a function of speaker-level speech attributes.  

4 Discussion 

We tested five implementations of ASR engines on 530 spontaneous spoken dialogic 

questions from 3 different teachers recorded with a headset microphone in noisy class-

rooms, and conducted a follow-up laboratory study. Google Speech and Bing Speech 

largely outperformed AT&T Watson, Microsoft Speech, and two implementations of 

Sphinx. A summary of results yields seven key insights:  

1. Google ASR performed slightly better than Bing when word order was considered, 

but Bing performed slightly better than Google when word order was disregarded. 

The WAcc of Google and Bing was only moderately correlated, indicating different 

strengths and weaknesses, thereby raising the possibility of combining the two.  

2. The majority of Bing and Google errors were substitution errors. Furthermore, dele-

tion errors were more frequent than insertion errors. 

3. Differences in speakers and sessions had little impact on WAcc. This conclusion was 

further validated for Bing using 28 English speakers in a laboratory study.  

4. Bing was susceptible to failure when speech had long pauses. We corrected this by 

removing long pauses. Doing so, along with removing low confidence results, re-

sulted in Bing having a higher WAcc than Google.  

5. Speech characteristics (i.e. speech duration, speech verbosity, speech length, and 

maximum silence) were found to have very small effects on ASR accuracy. This 

indicates Google Speech and Bing Speech were largely unaffected by these factors. 

6. Bing provides useful confidence scores that are relatively representative of the ac-

curacy of the hypothesis, along with multiple alternative hypotheses about what was 

spoken. This is a major advantage of using Bing over Google. 



7. Both Bing and Google completely failed or perfectly succeeded for a roughly 14% 

of utterances, and these instances of complete failure and success did not always 

overlap. Combining these two recognizers to avoid these failures may be strategic. 

Limitations. Our results suggest that Bing and Google were the best out-of-the-box 

ASR engines for automatically transcribing teacher speech in noisy classrooms with a 

specific emphasis on questions. However, other applications may have different ASR 

needs. The engines we selected for evaluation were limited to free engines requiring no 

training or optimizing in any way. Furthermore, our study focused only on dialogic 

questions. We note the possibility that the strict use of questions in our study may some-

how have influenced our results (though we have no reason to believe this is the case). 

Since we were able to collect recordings from only three teachers from one school, 

there is a chance that our results will not be corroborated across regions or speakers. 

However, considering the versatility of the ASRs thus far, a significant change in our 

results in response to a larger data set is not anticipated, but this awaits empirical veri-

fication. Finally, we did not test all possible ASR engines and we acknowledge that 

some ASR engines could perform better than the engines we tested.  

Concluding Remarks. Our results give us some confidence that ASR technologies 

have matured to the point that they can be useful for the automatic transcriptions of 

speech from classrooms and other noisy environments. To be clear, these technologies 

are still far from perfect. However, the goal is not to obtain perfect transcription of 

speech, but to obtain a reasonable representation of spoken dialog to serve as input to 

language processing techniques that should be uninfluenced by ambiguities in speech 

recognition (see [22] for further discussion). Furthermore, our analysis of where these 

systems succeed and fail on recordings from the classroom environments should benefit 

researchers who have been working with educational dialog in on-one-one settings, but 

who are interested in testing spoken-language technologies in the classroom.  
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