
J. Filipe, J. Cordeiro, and V. Pedrosa (Eds.): WEBIST 2005/2006, LNBIP 1, pp. 323–332, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Autotutor 3 Architecture

A Software Architecture for an Expandable, High-Availability ITS

Patrick Chipman, Andrew Olney, and Arthur C. Graesser

Institute for Intelligent Systems, University of Memphis, 365 Innovation Drive,
Memphis, TN, USA

pchipman@memphis.edu, aolney@memphis.edu, a-graesser@memphis.edu

Abstract. Providing high quality of service over the Internet to a variety of cli-
ents while simultaneously providing good pedagogy and extensibility for con-
tent creators and developers are key issues in the design of the computational
architecture of an intelligent tutoring system (ITS). In this paper, we describe an
ITS architecture that attempts to address both issues using a distributed hub-
and-spoke metaphor similar to that of the DARPA Galaxy Communicator. This
architecture is described in the context of the natural language ITS that uses it,
AutoTutor 3.

Keywords: Intelligent tutoring systems, software architecture, Internet-based
instruction.

1 Introduction

A great deal of advancement in the state of the art of intelligent tutoring systems (ITS)
has occurred in the last several years. Primarily, these advancements have been fo-
cused on improving pedagogical strategies by incorporating established psychological
research on human tutoring into tutoring systems (Graesser, Person, & Magliano,
1995; Aleven & Koedinger, 2002; VanLehn, Jones, & Chi, 1992); adding superior
student knowledge modelling such as model-tracing (VanLehn et al., 2000); provid-
ing advanced authoring tools to facilitate the rapid use of the ITS in new domains of
knowledge, or with different sets of learners with different levels of skills (Ainsworth
& Grimshaw, 2002); or improving the interface by adding animated characters such
as “talking heads,” also known as animated pedagogical agents (Johnson, Rickel, &
Lester, 2000), or natural language dialogue (Jordan, Rosé, & VanLehn, 2001).

However, behind all of these systems and their advancements must reside some form
of computational architecture. In many cases, this architecture is monolithic, rarely
discussed, and generally irrelevant. Intelligent tutoring systems that reside on modern
desktop computers have vast resources available for their processing and a high user
tolerance for failure, especially if the system is visually appealing, quick to respond, and
otherwise meets the user’s typical expectations of a “typical” application (Bouch &
Sasse, 1999). In fact, the presence of an animated pedagogical agent can improve the
subjective likeability of a system considerably (Moreno, Klettke, Nibbaragandla,
Graesser, & TRG, 2002), which would further enhance the user’s experience and allow
him to overlook any flaws in the underlying software (Bouch & Sasse, 1999).

324 P. Chipman, A. Olney, and A.C. Graesser

However, for a web-based or Internet-based system, where the target platform’s re-
sources are often much lower than that of a modern desktop computer and much of
the processing must be handled on a remote server for potentially hundreds or thou-
sands of simultaneous users, architectures that provide consistent levels of availability
and latency are mandatory if the system is to be adopted by users (Bhatti, Bouch, &
Kuchinsky, 2000). Furthermore, such architectures must be able to handle the sorts of
advancements in ITS technology that come at a rapid pace while simultaneously al-
lowing developers and content creators to achieve domain and tutoring strategy inde-
pendence. If all of these criteria are not met to some degree, it is probable that user
acceptance, both with learners and content creators, will be low and will confine the
ITS to laboratory use.

In this paper, we discuss the architecture of the third version of the venerable
AutoTutor natural dialogue intelligent tutoring system. This architecture was designed
specifically to balance the criteria of high availability and expandability, thereby of-
fering a quality user experience while providing the extensibility necessary for the
creation of more advanced ITSes in the future. Additionally, the architecture is suffi-
ciently generic that other systems can be built around its principles; it is not solely
restricted to use with our AutoTutor system.

2 What Is Autotutor?

A discussion of the architecture of AutoTutor 3 would not be complete without an ex-
planation of the system itself. AutoTutor is a complex system that simulates a human
or ideal tutor by holding a conversation with the learner in natural language (Graesser,
Lu, et al., in press). AutoTutor presents a series of questions or problems that require
approximately a paragraph of information to answer correctly. An example question in
conceptual physics is “When a car without headrests on the seats is struck from behind,
the passengers often suffer neck injuries. Why do passengers get neck injuries in this
situation?” A complete answer to this question is approximately 3-7 sentences in
length. AutoTutor assists the learner in the construction of an improved answer that
draws out more of the learner’s knowledge and that adaptively corrects problems with
the answer. The dialogue between AutoTutor and the learner typically lasts 50-200
conversational turns for one question. Figure 1 shows an example of the AutoTutor 3
interface.

The AutoTutor system has undergone a variety of empirical tests to validate its
pedagogical and conversational efficacy in both the domains of computer literacy
(Graesser, Lu, et al., in press) and conceptual physics (Graesser, Jackson, et al.,
2003). A “bystander Turing test” was performed to validate AutoTutor’s conversa-
tional smoothness. In such an experiment, a subject is shown a section of tutorial dia-
logue randomly selected from real AutoTutor transcripts in which, half the time, the
tutor move generated by AutoTutor has been replaced by a move generated by a hu-
man expert tutor. The subjects in this experiment, the bystanders, are asked to specify
if the tutor move in question was generated by a human or a computer. The bystand-
ers were wholly unable to make this distinction (Bautista, Person, & Graesser, 2002).
Tests of pedagogical effectiveness have shown learning gains of 0.2 to 1.5 sigma

 The Autotutor 3 Architecture 325

Fig. 1. The AutoTutor 3 user interface

(standard deviation units) with a mean of 0.8 sigma or around one letter grade of
improvement. The performance varies based on the type of measure used and the con-
tent domain (Graesser, Jackson, et al., 2003). This is comparable to both the perform-
ance of unskilled human tutors, who produce learning gains of around 0.4 sigma, or
half a letter grade of improvement (Cohen, Kulik, & Kulik, 1982), as well as to the
performance of other intelligent tutoring systems without natural language dialogue,
which produce learning gains of around 1.0 sigma (Corbett, 2001).

3 System Architecture

It has long been the desire of the Tutoring Research Group to offer AutoTutor to the
widest audience possible, both in terms of learners and content creators, because of its
impressive performance in empirical testing. As opposed to many intelligent tutoring
systems, AutoTutor offers a natural language interface; this is posited to be critical for
future ITS development (Jordan, Rosé, & VanLehn, 2001). However, this natural lan-
guage interface requires a great deal of computational resources in both processing
power and storage, making it difficult to deploy to desktop computers that are not
state of the art. Furthermore, content creators offer up a great deal of intellectual
property when creating the curriculum scripts that dictate the output of the system. It
is unlikely these individuals will be willing to provide their content for local use by
any number of learners. To solve both of these problems, it was decided to utilize a

326 P. Chipman, A. Olney, and A.C. Graesser

Language
Analysis

Module (1)

Logging
Module (4)

Assessments
Module (2)

Dialogue
Management
Module (3)

Curriculum
Scripts Utility

Latent Semantic
Analysis Utility

Muppet

Client

Hub

Fig. 2. An overview of the AutoTutor 3 Architecture

client-server architecture in which the AutoTutor 3 server resides at a fixed location
and learners and content creators access its functionality remotely.

The system architecture is somewhat related to the DARPA Galaxy Communicator
model, in which a variety of modules communicate, mediated by a central “hub”
(Galaxy Communicator Documentation). In the AutoTutor 3 architecture, outlined in
Figure 2, a central object known as the Hub (the octagon), hosted in the AutoTutor 3
server software, passes an object that contains the state of the system, the State Table
(not shown), between a set of Modules (circles) that alter the state without having any
specific knowledge of each other; the order of this process is specified by the Hub
and, for the current AutoTutor 3 system, is expressed in the figure as a number after
each Module’s name. Each Module may access a number of Utilities (squares) that
provide services through published interfaces. The State Table is sent to a variety of
potential client types using one of many Multi-Protocol Personal Translators, or
Muppets (shaded circle), that convert the State Table into a format that the client can
understand. The objects contained within the dashed rectangle exist together in the
main AutoTutor 3 server; all of the other objects are served through our custom-
written generic object server, the Module Server, and can each exist on the same or
different machines as load demands.

3.1 The .NET Framework and Remoting

The AutoTutor 3 system and its underlying architecture are implemented in a combi-
nation of C# and Visual Basic .NET, using the .NET Framework version 1.1 and the
Common Language Runtime by Microsoft Corporation. The CLR provides a variety
of advantages, not the least of which is the generic remote procedure call system
known as .NET Remoting. This part of the Framework allows remote objects to be

 The Autotutor 3 Architecture 327

accessed as if they were inside the AutoTutor server process; short of a call into the
Framework to “activate” the target object (whether it is a Module or a Utility), the
object can be accessed identically across the network or on the local machine (Micro-
soft .NET Technology Overview). By using the Remoting system, it is possible for
AutoTutor 3 Modules and Utilities to be split across multiple computers or multiple
processes as required to “scale out” as load increases. The underlying complexities of
accessing these remote objects are hidden behind the AT3Communicator class and the
Remoting system.

Remoting provides a binary communication channel that, in our internal tests, al-
lows the entire State Table for any turn to be conveyed using under 12 kilobytes of
data, thereby reducing network transfer latency within the system and to clients. Our
testing of the server under common experimental loads of around 30 simultaneous
users reveals that the network latency of a system where the Modules and Utilities
exist on separate machines is less than 1 ms, given a 100BaseT Ethernet interconnect.

3.2 State Table

In many ways, the State Table is the core of the AutoTutor 3 architecture. This exten-
sible class contains the complete state of the system for any particular student interac-
tion with the tutor. It normally survives for an entire problem and is discarded at the
end of a problem. The State Table provides a logical separation of the data upon
which the Modules work from the algorithms of the Modules themselves; in this way,
it acts both as the storage space for the system’s student model, as well as a sort of
command object if one considers the architecture as an implementation of the chain-
of-responsibility design pattern. Individual Modules store the results of their process-
ing in the State Table. These results can then be read and further processed by other
Modules, or simply ignored by other Modules if they are irrelevant to their process-
ing. Because the state of the system is loosely coupled to the Modules that use it,
it is relatively easy for new Modules to be added to the system to work on the data
contained within the State Table.

The State Table is a class that is tied to a specific inheritance chain of interfaces.
This ensures that Modules are themselves loosely coupled to the internal structure of
the State Table; a Module created for an earlier implementation and older interface is
guaranteed to work with newer versions of the State Table, because backward com-
patibility is mandated by the interface.

3.3 Hub

The Hub is the central manager of the AutoTutor architecture. This extremely simple
class has only one function: to call each of the Modules of which it knows in the se-
quence required to produce a complete State Table. The AutoTutor server software
handles loading the Module references into the Hub, which then makes the calls using
Remoting. While it would seem necessary to rewrite the Hub whenever adding a new
Module to the system, the current implementation of the Hub calls each of the Mod-
ules of which it knows in the sequence in which they were loaded; as this load se-
quence can be specified to the server in its configuration file, as long as dependencies
in which Modules must be called more than once are avoided, the standard Hub
implementation should be sufficient.

328 P. Chipman, A. Olney, and A.C. Graesser

3.4 Modules and the AT3Communicator

Each Module in the system, as shown in Figure 2, represents a separate stage in the
processing of a student move and the generation of an appropriate tutor turn. The inter-
nal mechanisms AutoTutor uses in each of those stages are covered in detail elsewhere
(Olney, Louwerse, Mathews, Marineau, Mitchell, & Graesser, 2003; Mathews, Jack-
son, Olney, Chipman, & Graesser 2003; Graesser, Lu, et al. in press) and will not be
detailed here. Each Module inherits from a master class called “AT3Communicator,”
which encapsulates the necessary public methods and implementations to link the
Module to the system by taking messages and their associated State Tables from the
Hub, acquiring references to the Utility objects, and handling thread synchronization
should the Module be called by multiple users, and therefore multiple threads of
processing, at once.

Because all of this functionality is encapsulated in this base class, those who wish
to extend the capabilities of the AutoTutor system by adding a new Module or alter-
ing an existing one need only override a single virtual method called “Execute,”
which is analogous to a “Main” function in standard procedural programming. This
overridden method is called by the base class and a copy of the State Table is passed
in; the Module returns this copy with any necessary modifications. Utilities may be
called by reading their references from a hash table, then calling methods on those
references. The Remoting system, as previously mentioned, handles the resolution of
those method calls.

While the AT3Communicator base class does handle thread synchronization with
regards to the State Table itself and the Utility references, thread safety is not assured
if the Module developer opts to add member variables to his Module’s class. How-
ever, this problem can be readily avoided by using static variables in the Execute
method and following standard programming practices that argue against the use of
global variables; alternatively, the Module programmer can use the State Table to
store the internal state of his module between calls. The current Dialogue Manage-
ment Module uses this technique.

3.5 Utilities

The Utilities of the architecture are external objects called by Modules using Remot-
ing. Unlike Modules, these objects have no fixed base class or interfaces, nor are they
called by the Hub. Therefore, thread safety is not hidden from the developer. The
complexities of Remoting are hidden from the Utility developer by the Module
Server, however. In return, the developer of a Utility receives the flexibility to define
his own interface and further gains the ability for his object’s methods to be called
directly from Modules, which can then share its functionality. In AutoTutor 3, we
have chosen to use Utilities to encapsulate functionality used by multiple Modules,
such as the Latent Semantic Analysis used to evaluate the similarity of strings (and
thus the quality of student responses), or the Curriculum Scripts that dictate the peda-
gogical moves of the system and provide domain independence, as detailed by
Mathews et al. (2003).

 The Autotutor 3 Architecture 329

3.6 Muppets

Multi-Protocol Personal Translators (“Muppets”) are the “glue” that connect clients
to the system. They exist within the main AutoTutor server and translate the State
Table into a format that a client can understand. Muppets allow the server to connect
to clients in any programming language with any set of capabilities; smart clients
written in a .NET language can connect to a Remoting Muppet, for instance, and
have access to the entire State Table. A web browser could connect to a Web Server
Muppet that turns the State Table into a web page with sufficient session manage-
ment to keep track of each user connecting to the web site. Mobile phones could use
an Instant Messaging Muppet that emulates an Instant Messaging service or chat
room.

Muppets are perhaps the most complicated part of the system to develop, as they
must deal with session management and network protocols; none of these low level
details are hidden. To facilitate Muppet development and use of AutoTutor on multi-
ple platforms, the architecture was developed with three Muppets: a .NET Remoting
Muppet for smart clients, a text-based Muppet that uses simple TCP sockets, and a
web-based Muppet that provides a simple World Wide Web interface.

3.7 Server Software

The AutoTutor 3 architecture uses only two pieces of server software: the AutoTutor
Server, which handles Muppets and Hubs, and the Module Server, which is a generic
server for offering .NET objects over Remoting. The AutoTutor Server is designed to
bootstrap the entire system by using its configuration file to locate, instantiate, and
initialize Muppets, Hubs, and all of the Modules and Utilities used by them. Each
instance of an AutoTutor Server is capable of handling multiple Muppets and Hubs
with the same or different sets of Modules and Utilities, which gives it the ability to
support different “versions” of AutoTutor on a single machine that differ only in their
interface to clients or in their internal processing steps.

The Module Server is not specific to this architecture. It is simply a generic server
that can instantiate and offer objects or parts of objects, as defined by interfaces,
through .NET Remoting. It is crucial to the proper operation of the architecture, but it
can be used by any project in which Common Language Runtime objects need to be
offered. Other distributed systems may readily make use of this server without im-
plementing any part of the AutoTutor 3 architecture.

3.8 Client Software

Through the use of Muppets, specific client software is not required to use systems
built on the AutoTutor 3 architecture. However, a smart client with support for plug-
ins, an animated pedagogical agent, 3-D simulations, and client-side processing of
data is available. Additionally, the Web Muppet provides a text-based interface on the
World Wide Web.

330 P. Chipman, A. Olney, and A.C. Graesser

4 Empirical Tests of Performance

The AutoTutor 3 system was completed approximately one year ago. It is a complete
rewrite of the older AutoTutor 2 system (Graesser, VanLehn, Rosé, Jordan, & Harter,
2001). As such, empirical tests both of its ability to mimic this older system’s abilities
while adding new functionality and also of its architecture’s raw performance are on-
going. Thus far, empirical tests look promising, with the AutoTutor 3 system match-
ing the pedagogical performance of the AutoTutor 2 system and further enhancing it
with the addition of 3-D simulations within the domain of conceptual physics.

With regards to the architecture’s performance, internal profiling reveals that net-
work latencies between components are less than 1 ms, though this is of course likely
to increase if the components are further separated over a larger network. The Modules
and Utilities of AutoTutor are CPU bound; their memory requirements are roughly
constant, requiring only approximately another 100 kilobytes per simultaneous user
atop a basic memory footprint of approximately 180 megabytes. Again, these values
will vary based on the Modules used, but profiling shows that the architecture itself
contributes very little to the memory or CPU footprint of the AutoTutor 3 processes.

Based on the average size of the State Tables in our internal stress testing using ac-
tive users and distributed load generation with multiple computers, we estimate that
any individual AutoTutor server instance can support at maximum approximately 800
simultaneous users, assuming all of the components of the system are located on a
single server machine (a Pentium Xeon 1.4 gigahertz with 1 gigabyte of RAM in our
tests) and the clients connect using 100BaseT Ethernet. Our testing of the system’s
architectural performance in the course of empirical testing of its pedagogy shows
that it can readily support at least 30 simultaneous users with no detectable loss of
responsiveness. A large study in which the system is used to support remote, naïve
learners at other universities is in progress, but preliminary results have shown that a
single AutoTutor 3 server is more than capable of providing advanced, natural lan-
guage intelligent tutoring services to several hundred simultaneous users across the
Internet while maintaining a high quality of service. Further empirical testing of the
system’s performance in the context of new experiments is currently in progress and
should be completed by the end of 2005.

5 Future Directions

Beyond the need for further empirical performance testing, there is room for
improvement in this architecture. At the moment, any form of load balancing or clus-
tering must be handled manually by those hosting AutoTutor servers; monitoring ap-
plication load and responding to it is a difficult and time-consuming task for system
administrators. Future versions of this architecture, which will maintain backwards
compatibility and provide these advantages to all existing code by leveraging the class
inheritance system, will provide adaptive load balancing services through the strategic
use of threading and dynamic load shedding. This will allow other computers to dy-
namically take over parts of the AutoTutor processing when the server is overloaded,
or will allow a Muppet to transparently redirect a learner to a less crowded server
providing the same content. Techniques such as the independent event queues and

 The Autotutor 3 Architecture 331

controllers of the SEDA architecture (Welsh, Culler, & Brewer, 2001) may be used to
provide better quality of service under extremely heavy loads.

To make the AutoTutor system itself and not just its architecture more appealing to
content creators, support for authoring tools that can manipulate the internal state of
the Modules (such as the pedagogical strategies of the Dialogue Management Mod-
ule) will be added, along with licensing support that can restrict use of tutoring sys-
tems based on this architecture, including AutoTutor, to those authorized to use the
intellectual property contained within.

Acknowledgement

The Tutoring Research Group (TRG) is an interdisciplinary research team comprised
of approximately 35 researchers from psychology, computer science, physics, and
education (visit http://www.autotutor.org). The research on AutoTutor was supported
by the National Science Foundation (SBR 9720314, REC 0106965, REC 0126265,
ITR 0325428) and the DoD Multidisciplinary University Research Initiative (MURI)
administered by ONR under grant N00014-00-1-0600. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of DoD, ONR, or NSF.

References

Ainsworth, S., Grimshaw, S.: Evaluating the Effectiveness and Efficiency of the REDEEM
Intelligent Tutoring System Authoring Tool. Retrieved October 26, 2004 from the Univer-
sity of Nottingham, ESRC Centre for Research in Development, Instruction, and Training
web site (2002) http://www.psychology.nottingham.ac.uk/staff/sea/techreport_69.pdf

Aleven, V., Koedinger, K.R.: An effective metacognitive strategy: Learning by doing and ex-
plaining with a computer-based Cognitive Tutor. Cognitive Science 26, 147–179 (2002)

Bautista, K., Person, N., Graesser, A.C.: Tutoring Research Group. In: Cerri, S.A., Gouardéres,
G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 821–830. Springer, Heidelberg
(2002)

Bhatti, N., Bouch, A., Kuchinsky, A.: Integrating User-Perceived Quality into Web Server De-
sign. In: Proceedings of the Ninth International World Wide Web Conference. May 2000.
Amsterdam. Retrieved January 22, 2005 from http://www9.org/w9cdrom/92/92.html

Bouch, A., Sasse, M.A.: It ain’t what you charge it’s the way that you do it: A user perspective
of network QoS and pricing. In: Proceedings of IM’99.IFIP, Boston (1999)

Cohen, P.A., Kulik, J.A., Kulik, C.C.: Educational outcomes of tutoring: A meta-analysis of
findings. American Educational Research Journal 19, 237–248 (1982)

Corbett, A.T.: Cognitive computer tutors: Solving the two-sigma problem. In: Bauer, M.,
Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 137–147.
Springer, Heidelberg (2001)

Galaxy Communicator Documentation. (n.d.) Retrieved December 17, 2004 from
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/
manual/index.html

Graesser, A.C., Jackson, G.T., Mathews, E.C., Mitchell, H.H., Olney, A., Ventura, M., et al.:
Why/AutoTutor: A test of learning gains from a physics tutor with natural language dia-
logue. In: Proceedings of the 25th Annual Conference of the Cognitive Science Society pp.
1–6 Boston, MA: Cognitive Science Society (2003)

332 P. Chipman, A. Olney, and A.C. Graesser

Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M., Olney, A., Louwerse, M.M.:
AutoTutor: A tutor with dialogue in natural language. Behavioral Research Methods, In-
struments, and Computers (in press)

Graesser, A.C., Person, N.K., Magliano, J.P.: Collaborative dialogue patterns in naturalistic
one-on-one tutoring. Applied Cognitive Psychology 9, 359–387 (1995)

Graesser, A.C., VanLehn, K., Rosé, C., Jordan, P., Harter, D.: Intelligent tutoring systems with
conversational dialogue. AI Magazine 22, 39–51 (2001)

Johnson, W.L., Rickel, J.W., Lester, J.C.: Animated pedagogical agents: Face-to-face interac-
tion in interactive learning environments. International Journal of Artificial Intelligence in
Education 11, 47–78 (2000)

Jordan, P., Rosé, C., VanLehn, K.: Tools for authoring tutorial dialogue knowledge. In: Pro-
ceedings of AI in Education 2001 Conference, IOS Press, Amsterdam (2001)

Mathews, E.C., Jackson, G.T., Olney, A., Chipman, P., Graesser, A.C.: Achieving Domain
Independence in AutoTutor. In: Callaos, N., Margenstern, M., Zhang, J., Castillo, O., Do-
berkat, E., (eds.) The Seventh World Multiconference on Systemics, Cybernetics, and In-
formatics Proceedings: Computer Science and Engineerings I, vol. 5, pp. 172–176. Orlando:
IIIS (2003)

Microsoft. NET Technology Overview. (n.d.) Seattle, WA: Microsoft Corp. Retrieved October
11, 2004 from http://msdn.microsoft.com/netframework/technologyinfo/overview/default.
aspx

Moreno, K.N., Klettke, B., Nibbaragandla, K., Graesser, A.C.: the Tutoring Research Group.
Perceived characteristics and pedagogical efficacy of animated conversational agents. In:
Cerri, S.A., Gouarderes, G., Paraguacu, F. (eds.) Intelligent Tutoring Systems, pp. 963–971.
Springer, Berlin, Germany (2002)

Olney, A., Louwerse, M.M., Mathews, E.C., Marineau, J., Mitchell, H.H., Graesser, A.C.: Ut-
terance classification in AutoTutor. In: Building Educational Applications using Natural
Language Processing. Proceedings of the Human Language Technology - North American
Chapter of the Association for Computational Linguistics Conference 2003 Workshop, pp.
1–8. Association for Computational Linguistics, Philadelphia (2003)

VanLehn, K., Freedman, R., Jordan, P., Murray, C., Osan, R., Ringenberg, M., Rosé, C.,
Schulze, K., Shelby, R., Treacy, D., Weinstein, A., Wintersgill, M.: Fading and Deepening:
The Next Steps for Andes and Other Model-Tracing Tutors. In: Gauthier, G., VanLehn, K.,
Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, Springer, Heidelberg (2000)

VanLehn, K., Jones, R.M., Chi, M.T.H.: A model of the self-explanation effect. Journal of the
Learning Sciences 2, 1–60 (1992)

Welsh, M., Culler, D., Brewer, E.: SEDA: An architecture for well-conditioned, scalable inter-
net services. In: Proceedings of the Eighteenth Symposium on Operating Systems Principles
(SOSP-18), pp. 230–243. ACM Press, New York (2001)

