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Abstract. Providing high quality of service over the Internet to a variety of cli-
ents while simultaneously providing good pedagogy and extensibility for con-
tent creators and developers are key issues in the design of the computational 
architecture of an intelligent tutoring system (ITS). In this paper, we describe an 
ITS architecture that attempts to address both issues using a distributed hub-
and-spoke metaphor similar to that of the DARPA Galaxy Communicator. This 
architecture is described in the context of the natural language ITS that uses it, 
AutoTutor 3. 
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1   Introduction 

A great deal of advancement in the state of the art of intelligent tutoring systems (ITS) 
has occurred in the last several years. Primarily, these advancements have been fo-
cused on improving pedagogical strategies by incorporating established psychological 
research on human tutoring into tutoring systems (Graesser, Person, & Magliano, 
1995; Aleven & Koedinger, 2002; VanLehn, Jones, & Chi, 1992); adding superior 
student knowledge modelling such as model-tracing (VanLehn et al., 2000); provid-
ing advanced authoring tools to facilitate the rapid use of the ITS in new domains of 
knowledge, or with different sets of learners with different levels of skills (Ainsworth 
& Grimshaw, 2002); or improving the interface by adding animated characters such 
as “talking heads,” also known as animated pedagogical agents (Johnson, Rickel, & 
Lester, 2000), or natural language dialogue (Jordan, Rosé, & VanLehn, 2001).  

However, behind all of these systems and their advancements must reside some form 
of computational architecture. In many cases, this architecture is monolithic, rarely  
discussed, and generally irrelevant. Intelligent tutoring systems that reside on modern 
desktop computers have vast resources available for their processing and a high user 
tolerance for failure, especially if the system is visually appealing, quick to respond, and 
otherwise meets the user’s typical expectations of a “typical” application (Bouch & 
Sasse, 1999). In fact, the presence of an animated pedagogical agent can improve the 
subjective likeability of a system considerably (Moreno, Klettke, Nibbaragandla, 
Graesser, & TRG, 2002), which would further enhance the user’s experience and allow 
him to overlook any flaws in the underlying software (Bouch & Sasse, 1999). 
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However, for a web-based or Internet-based system, where the target platform’s re-
sources are often much lower than that of a modern desktop computer and much of 
the processing must be handled on a remote server for potentially hundreds or thou-
sands of simultaneous users, architectures that provide consistent levels of availability 
and latency are mandatory if the system is to be adopted by users (Bhatti, Bouch, & 
Kuchinsky, 2000). Furthermore, such architectures must be able to handle the sorts of 
advancements in ITS technology that come at a rapid pace while simultaneously al-
lowing developers and content creators to achieve domain and tutoring strategy inde-
pendence. If all of these criteria are not met to some degree, it is probable that user 
acceptance, both with learners and content creators, will be low and will confine the 
ITS to laboratory use. 

In this paper, we discuss the architecture of the third version of the venerable 
AutoTutor natural dialogue intelligent tutoring system. This architecture was designed 
specifically to balance the criteria of high availability and expandability, thereby of-
fering a quality user experience while providing the extensibility necessary for the 
creation of more advanced ITSes in the future. Additionally, the architecture is suffi-
ciently generic that other systems can be built around its principles; it is not solely 
restricted to use with our AutoTutor system. 

2   What Is Autotutor? 

A discussion of the architecture of AutoTutor 3 would not be complete without an ex-
planation of the system itself. AutoTutor is a complex system that simulates a human 
or ideal tutor by holding a conversation with the learner in natural language (Graesser, 
Lu, et al., in press). AutoTutor presents a series of questions or problems that require 
approximately a paragraph of information to answer correctly. An example question in 
conceptual physics is “When a car without headrests on the seats is struck from behind, 
the passengers often suffer neck injuries. Why do passengers get neck injuries in this 
situation?” A complete answer to this question is approximately 3-7 sentences in 
length. AutoTutor assists the learner in the construction of an improved answer that 
draws out more of the learner’s knowledge and that adaptively corrects problems with 
the answer.  The dialogue between AutoTutor and the learner typically lasts 50-200 
conversational turns for one question. Figure 1 shows an example of the AutoTutor 3 
interface. 

The AutoTutor system has undergone a variety of empirical tests to validate its 
pedagogical and conversational efficacy in both the domains of computer literacy 
(Graesser, Lu, et al., in press) and conceptual physics (Graesser, Jackson, et al., 
2003). A “bystander Turing test” was performed to validate AutoTutor’s conversa-
tional smoothness. In such an experiment, a subject is shown a section of tutorial dia-
logue randomly selected from real AutoTutor transcripts in which, half the time, the 
tutor move generated by AutoTutor has been replaced by a move generated by a hu-
man expert tutor. The subjects in this experiment, the bystanders, are asked to specify 
if the tutor move in question was generated by a human or a computer. The bystand-
ers were wholly unable to make this distinction (Bautista, Person, & Graesser, 2002). 
Tests of pedagogical effectiveness have shown learning gains of 0.2 to 1.5 sigma  
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Fig. 1. The AutoTutor 3 user interface 

(standard deviation units) with a mean of 0.8 sigma or around one letter grade of  
improvement. The performance varies based on the type of measure used and the con-
tent domain (Graesser, Jackson, et al., 2003). This is comparable to both the perform-
ance of unskilled human tutors, who produce learning gains of around 0.4 sigma, or 
half a letter grade of improvement (Cohen, Kulik, & Kulik, 1982), as well as to the 
performance of other intelligent tutoring systems without natural language dialogue, 
which produce learning gains of around 1.0 sigma (Corbett, 2001). 

3   System Architecture 

It has long been the desire of the Tutoring Research Group to offer AutoTutor to the 
widest audience possible, both in terms of learners and content creators, because of its 
impressive performance in empirical testing. As opposed to many intelligent tutoring 
systems, AutoTutor offers a natural language interface; this is posited to be critical for 
future ITS development (Jordan, Rosé, & VanLehn, 2001). However, this natural lan-
guage interface requires a great deal of computational resources in both processing 
power and storage, making it difficult to deploy to desktop computers that are not 
state of the art. Furthermore, content creators offer up a great deal of intellectual 
property when creating the curriculum scripts that dictate the output of the system. It 
is unlikely these individuals will be willing to provide their content for local use by 
any number of learners. To solve both of these problems, it was decided to utilize a  
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Fig. 2. An overview of the AutoTutor 3 Architecture 

client-server architecture in which the AutoTutor 3 server resides at a fixed location 
and learners and content creators access its functionality remotely. 

The system architecture is somewhat related to the DARPA Galaxy Communicator 
model, in which a variety of modules communicate, mediated by a central “hub” 
(Galaxy Communicator Documentation). In the AutoTutor 3 architecture, outlined in 
Figure 2, a central object known as the Hub (the octagon), hosted in the AutoTutor 3 
server software, passes an object that contains the state of the system, the State Table 
(not shown), between a set of Modules (circles) that alter the state without having any 
specific knowledge of each other; the order of this process is specified by the Hub 
and, for the current AutoTutor 3 system, is expressed in the figure as a number after 
each Module’s name. Each Module may access a number of Utilities (squares) that 
provide services through published interfaces. The State Table is sent to a variety of 
potential client types using one of many Multi-Protocol Personal Translators, or 
Muppets (shaded circle), that convert the State Table into a format that the client can 
understand. The objects contained within the dashed rectangle exist together in the 
main AutoTutor 3 server; all of the other objects are served through our custom-
written generic object server, the Module Server, and can each exist on the same or 
different machines as load demands. 

3.1   The .NET Framework and Remoting 

The AutoTutor 3 system and its underlying architecture are implemented in a combi-
nation of C# and Visual Basic .NET, using the .NET Framework version 1.1 and the 
Common Language Runtime by Microsoft Corporation. The CLR provides a variety 
of advantages, not the least of which is the generic remote procedure call system 
known as .NET Remoting. This part of the Framework allows remote objects to be 
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accessed as if they were inside the AutoTutor server process; short of a call into the 
Framework to “activate” the target object (whether it is a Module or a Utility), the 
object can be accessed identically across the network or on the local machine (Micro-
soft .NET Technology Overview). By using the Remoting system, it is possible for 
AutoTutor 3 Modules and Utilities to be split across multiple computers or multiple 
processes as required to “scale out” as load increases. The underlying complexities of 
accessing these remote objects are hidden behind the AT3Communicator class and the 
Remoting system.  

Remoting provides a binary communication channel that, in our internal tests, al-
lows the entire State Table for any turn to be conveyed using under 12 kilobytes of 
data, thereby reducing network transfer latency within the system and to clients. Our 
testing of the server under common experimental loads of around 30 simultaneous 
users reveals that the network latency of a system where the Modules and Utilities 
exist on separate machines is less than 1 ms, given a 100BaseT Ethernet interconnect. 

3.2   State Table 

In many ways, the State Table is the core of the AutoTutor 3 architecture. This exten-
sible class contains the complete state of the system for any particular student interac-
tion with the tutor. It normally survives for an entire problem and is discarded at the 
end of a problem. The State Table provides a logical separation of the data upon 
which the Modules work from the algorithms of the Modules themselves; in this way, 
it acts both as the storage space for the system’s student model, as well as a sort of 
command object if one considers the architecture as an implementation of the chain-
of-responsibility design pattern. Individual Modules store the results of their process-
ing in the State Table. These results can then be read and further processed by other 
Modules, or simply ignored by other Modules if they are irrelevant to their process-
ing. Because the state of the system is loosely coupled to the Modules that use it,  
it is relatively easy for new Modules to be added to the system to work on the data  
contained within the State Table. 

The State Table is a class that is tied to a specific inheritance chain of interfaces. 
This ensures that Modules are themselves loosely coupled to the internal structure of 
the State Table; a Module created for an earlier implementation and older interface is 
guaranteed to work with newer versions of the State Table, because backward com-
patibility is mandated by the interface. 

3.3   Hub 

The Hub is the central manager of the AutoTutor architecture. This extremely simple 
class has only one function: to call each of the Modules of which it knows in the se-
quence required to produce a complete State Table. The AutoTutor server software 
handles loading the Module references into the Hub, which then makes the calls using 
Remoting. While it would seem necessary to rewrite the Hub whenever adding a new 
Module to the system, the current implementation of the Hub calls each of the Mod-
ules of which it knows in the sequence in which they were loaded; as this load se-
quence can be specified to the server in its configuration file, as long as dependencies 
in which Modules must be called more than once are avoided, the standard Hub  
implementation should be sufficient. 
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3.4   Modules and the AT3Communicator 

Each Module in the system, as shown in Figure 2, represents a separate stage in the 
processing of a student move and the generation of an appropriate tutor turn. The inter-
nal mechanisms AutoTutor uses in each of those stages are covered in detail elsewhere 
(Olney, Louwerse, Mathews, Marineau, Mitchell, & Graesser, 2003; Mathews, Jack-
son, Olney, Chipman, & Graesser 2003; Graesser, Lu, et al. in press) and will not be 
detailed here. Each Module inherits from a master class called “AT3Communicator,” 
which encapsulates the necessary public methods and implementations to link the 
Module to the system by taking messages and their associated State Tables from the 
Hub, acquiring references to the Utility objects, and handling thread synchronization 
should the Module be called by multiple users, and therefore multiple threads of  
processing, at once. 

Because all of this functionality is encapsulated in this base class, those who wish 
to extend the capabilities of the AutoTutor system by adding a new Module or alter-
ing an existing one need only override a single virtual method called “Execute,” 
which is analogous to a “Main” function in standard procedural programming. This 
overridden method is called by the base class and a copy of the State Table is passed 
in; the Module returns this copy with any necessary modifications. Utilities may be 
called by reading their references from a hash table, then calling methods on those 
references. The Remoting system, as previously mentioned, handles the resolution of 
those method calls. 

While the AT3Communicator base class does handle thread synchronization with 
regards to the State Table itself and the Utility references, thread safety is not assured 
if the Module developer opts to add member variables to his Module’s class. How-
ever, this problem can be readily avoided by using static variables in the Execute 
method and following standard programming practices that argue against the use of 
global variables; alternatively, the Module programmer can use the State Table to 
store the internal state of his module between calls. The current Dialogue Manage-
ment Module uses this technique. 

3.5   Utilities 

The Utilities of the architecture are external objects called by Modules using Remot-
ing. Unlike Modules, these objects have no fixed base class or interfaces, nor are they 
called by the Hub. Therefore, thread safety is not hidden from the developer. The 
complexities of Remoting are hidden from the Utility developer by the Module 
Server, however. In return, the developer of a Utility receives the flexibility to define 
his own interface and further gains the ability for his object’s methods to be called 
directly from Modules, which can then share its functionality. In AutoTutor 3, we 
have chosen to use Utilities to encapsulate functionality used by multiple Modules, 
such as the Latent Semantic Analysis used to evaluate the similarity of strings (and 
thus the quality of student responses), or the Curriculum Scripts that dictate the peda-
gogical moves of the system and provide domain independence, as detailed by 
Mathews et al. (2003). 
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3.6   Muppets 

Multi-Protocol Personal Translators (“Muppets”) are the “glue” that connect clients 
to the system. They exist within the main AutoTutor server and translate the State 
Table into a format that a client can understand. Muppets allow the server to connect 
to clients in any programming language with any set of capabilities; smart clients 
written in a .NET language can connect to a Remoting Muppet, for instance, and 
have access to the entire State Table. A web browser could connect to a Web Server 
Muppet that turns the State Table into a web page with sufficient session manage-
ment to keep track of each user connecting to the web site. Mobile phones could use 
an Instant Messaging Muppet that emulates an Instant Messaging service or chat 
room. 

Muppets are perhaps the most complicated part of the system to develop, as they 
must deal with session management and network protocols; none of these low level 
details are hidden. To facilitate Muppet development and use of AutoTutor on multi-
ple platforms, the architecture was developed with three Muppets: a .NET Remoting 
Muppet for smart clients, a text-based Muppet that uses simple TCP sockets, and a 
web-based Muppet that provides a simple World Wide Web interface. 

3.7   Server Software 

The AutoTutor 3 architecture uses only two pieces of server software: the AutoTutor 
Server, which handles Muppets and Hubs, and the Module Server, which is a generic 
server for offering .NET objects over Remoting. The AutoTutor Server is designed to 
bootstrap the entire system by using its configuration file to locate, instantiate, and 
initialize Muppets, Hubs, and all of the Modules and Utilities used by them. Each 
instance of an AutoTutor Server is capable of handling multiple Muppets and Hubs 
with the same or different sets of Modules and Utilities, which gives it the ability to 
support different “versions” of AutoTutor on a single machine that differ only in their 
interface to clients or in their internal processing steps. 

The Module Server is not specific to this architecture. It is simply a generic server 
that can instantiate and offer objects or parts of objects, as defined by interfaces, 
through .NET Remoting. It is crucial to the proper operation of the architecture, but it 
can be used by any project in which Common Language Runtime objects need to be 
offered. Other distributed systems may readily make use of this server without im-
plementing any part of the AutoTutor 3 architecture. 

3.8   Client Software 

Through the use of Muppets, specific client software is not required to use systems 
built on the AutoTutor 3 architecture. However, a smart client with support for plug-
ins, an animated pedagogical agent, 3-D simulations, and client-side processing of 
data is available. Additionally, the Web Muppet provides a text-based interface on the 
World Wide Web. 
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4   Empirical Tests of Performance 

The AutoTutor 3 system was completed approximately one year ago. It is a complete 
rewrite of the older AutoTutor 2 system (Graesser, VanLehn, Rosé, Jordan, & Harter, 
2001). As such, empirical tests both of its ability to mimic this older system’s abilities 
while adding new functionality and also of its architecture’s raw performance are on-
going. Thus far, empirical tests look promising, with the AutoTutor 3 system match-
ing the pedagogical performance of the AutoTutor 2 system and further enhancing it 
with the addition of 3-D simulations within the domain of conceptual physics. 

With regards to the architecture’s performance, internal profiling reveals that net-
work latencies between components are less than 1 ms, though this is of course likely 
to increase if the components are further separated over a larger network. The Modules 
and Utilities of AutoTutor are CPU bound; their memory requirements are roughly 
constant, requiring only approximately another 100 kilobytes per simultaneous user 
atop a basic memory footprint of approximately 180 megabytes. Again, these values 
will vary based on the Modules used, but profiling shows that the architecture itself 
contributes very little to the memory or CPU footprint of the AutoTutor 3 processes. 

Based on the average size of the State Tables in our internal stress testing using ac-
tive users and distributed load generation with multiple computers, we estimate that 
any individual AutoTutor server instance can support at maximum approximately 800 
simultaneous users, assuming all of the components of the system are located on a 
single server machine (a Pentium Xeon 1.4 gigahertz with 1 gigabyte of RAM in our 
tests) and the clients connect using 100BaseT Ethernet. Our testing of the system’s 
architectural performance in the course of empirical testing of its pedagogy shows 
that it can readily support at least 30 simultaneous users with no detectable loss of 
responsiveness. A large study in which the system is used to support remote, naïve 
learners at other universities is in progress, but preliminary results have shown that a 
single AutoTutor 3 server is more than capable of providing advanced, natural lan-
guage intelligent tutoring services to several hundred simultaneous users across the 
Internet while maintaining a high quality of service. Further empirical testing of the 
system’s performance in the context of new experiments is currently in progress and 
should be completed by the end of 2005. 

5   Future Directions 

Beyond the need for further empirical performance testing, there is room for  
improvement in this architecture. At the moment, any form of load balancing or clus-
tering must be handled manually by those hosting AutoTutor servers; monitoring ap-
plication load and responding to it is a difficult and time-consuming task for system 
administrators. Future versions of this architecture, which will maintain backwards 
compatibility and provide these advantages to all existing code by leveraging the class 
inheritance system, will provide adaptive load balancing services through the strategic 
use of threading and dynamic load shedding. This will allow other computers to dy-
namically take over parts of the AutoTutor processing when the server is overloaded, 
or will allow a Muppet to transparently redirect a learner to a less crowded server 
providing the same content. Techniques such as the independent event queues and 
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controllers of the SEDA architecture (Welsh, Culler, & Brewer, 2001) may be used to 
provide better quality of service under extremely heavy loads. 

To make the AutoTutor system itself and not just its architecture more appealing to 
content creators, support for authoring tools that can manipulate the internal state of 
the Modules (such as the pedagogical strategies of the Dialogue Management Mod-
ule) will be added, along with licensing support that can restrict use of tutoring sys-
tems based on this architecture, including AutoTutor, to those authorized to use the 
intellectual property contained within. 
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