
12. Practical Programming for NLP
Patrick Jeuniaux

1
, Andrew Olney

2
, Sidney D'Mello

2

1
Université Laval, Canada,

2
University of Memphis, USA

ABSTRACT

This chapter is aimed at students and researchers who are eager to learn about practical programmatic

solutions to natural language processing (NLP) problems. In addition to introducing the readers to

programming basics, programming tools, and complete programs, we also hope to pique their interest to

actively explore the broad and fascinating field of automatic natural language processing. Part I

introduces programming basics and the Python programming language. Part II takes a step by step

approach in illustrating the development of a program to solve a NLP problem. Part III provides some

hints to help readers initiate their own NLP programming projects.

INTRODUCTION

Natural language processing (NLP) attempts to automatically analyze the languages spoken by humans

(i.e., natural languages). For instance, you can program a computer to automatically identify the language

of a text, extract the grammatical structure of sentences (see Chapter XXX of this book), categorize texts

by genre (e.g., decide whether a text is a scientific or a narrative text; see Chapter XXX for classification

applications), summarize a book (see Chapter XXX), etc. This chapter is aimed at teaching specialized,

yet introductory, programming skills that are required to use available NLP tools. We hope that this

chapter serves as a catalyst to launch NLP projects by motivating novice programmers to learn more

about programming and encouraging more advanced programmers to develop NLP programs. The

chapter is aimed at readers from the interdisciplinary arena that encompasses computer science, cognitive

psychology, and linguistics. It is geared for individuals who have a practical NLP problem and for curious

readers who are eager to learn about practical solutions for such problems.

Fortifying students with the requisite programming skills to tackle an NLP problem in a single

chapter is a daunting task for two primary reasons. First, along with advanced statistics, programming is

probably the most intimidating task that practitioners in disciplines like linguistics or cognitive

psychology can undertake. The typical student or researcher in these fields has little formal training in

mathematics, logic, and computer science, hence, their first foray into programming can be a bit

challenging. Second, although computer scientists have considerable experience with programming and

have mastered many computer technologies, they might not be privy to the libraries or packages that are

readily and freely available for NLP projects. In other words, there is a lot to cover if we attempt to

address both these audiences, and it seems like an impossible challenge to design a chapter extending

from the basics of programming to the specifics of NLP. Fortunately, for the reader and us, the

availability of state-of-the-art NLP technologies and the enhanced usability available through easy-to-use

interfaces alleviates some of these challenges.

Because of space limitations, we could not achieve the coverage depth we had hoped for. We

originally had planned to include programming projects in several languages such as Python, Perl, Java

and PHP, along with numerous screen captures of captivating programming demonstrations. The chapter

is now more focused on examples in Python. Fortunately, the materials that could not be included in the

chapter (e.g., scripts, examples, screen captures), are available for your convenience on the companion

website at http://patrickjeuniaux.info/NLPchapter. It also provides a series of links to NLP

resources, as well as detailed instructions about how to execute the programs that are needed for the

exercises. A great advantage of having a website is that it can be updated with current content, so do not

hesitate to contact us if you wish to give us feedback.

This chapter has three parts. Part I offers an introduction to programming. Part II gives a concrete

example of programming for a specific NLP project. Part III provides general hints about starting your

own NLP programming project. Readers who do not have programming experience or who do not know

Python should definitely start with Part I. Individuals who have a working knowledge of Python can skip

most of Part I. Among these people, the ones who do not know about NLTK could limit their reading of

Part I to the section on functions and onwards. Although Part I covers a lot of material, the topic coverage

is far from exhaustive. When you are done with this chapter, we encourage you to read a more complete

introduction. We particularly recommend Elkner, Downey, and Meyers (2009). The same can be said of

Part II. We also recommend reading Bird, Klein and Loper (2009), who give a thorough treatment of NLP

programming with Python’s Natural Language Processing Toolkit (NLTK).

PART I. PROGRAMMING BASICS

Computers are controlled by sets of instructions called programs. Because they are somewhat simple

machines, computers can only follow the most unambiguous instructions. To achieve this ideal of

precision, a program is written in a restricted language. Programming languages use a specific vocabulary

(i.e. a set of words), a syntax (i.e., a set of rules defining how to use these words), and semantics (i.e., the

meaning of the words and rules from a programming point of view). Learning the basic rules of a

language is the first step towards writing meaningful and useful programs. But prior to learning a

language, it might be good to learn about the history of computer programming. Knowing the historical

motivation behind programming will help you grasp what programming is all about.

Programming in Context

Today we usually think of a computer as a general purpose device. However, this was not always the

case. Whether you consider Babbage's Difference Engine (Swade, 2002), which solved polynomial

functions, or Colossus, which helped decipher the Enigma codes during World War II (Hodges, 2000) to

be computers, the fact remains that a "computer" is simply something that performs calculations. In fact,

before the 20th century people whose jobs were to perform complex calculations for various purposes

were called 'computers' (Anderson, 2009).

As the science and technology of computing advanced, man-made computers became more complex

and were able to perform more complex calculations. However, the process for doing so was extremely

tedious and error prone. Computers were massive beasts of machines in those days, often taking up entire

rooms. Programming sometimes meant re-patching cables on a switchboard (Petzold, 2000), a far cry

from the text editors and visual interfaces that we are familiar with today.

At this time it became clear to the scientists involved with creating and using these machines that the

difficulty of using computers was an obstruction to their widespread use and acceptance. Their solution to

this problem was to create layers of abstraction between the user and the computer. This process of

increasing abstraction has continued to the present day and shows no signs of stopping in the foreseeable

future. For example, consider your computer's desktop. "Desktop" is just an abstraction and analogy for a

physical desktop for pens and paper. Similarly, the folders on your desktop are analogous to physical file

cabinets used to store paper documents.

Programming languages are just another kind of abstraction over the underlying computer

instructions ("machine code"). The machine code is simply a very detailed and hard to use programming

language. For most applications, programmers do not use machine code but use instead modern

programming languages which are designed to simplify the programmer's life (by reducing the size of the

program, reducing the likelihood of programming error, etc.). Programming languages have evolved in

such a way that programming is no longer restricted to the purview of professional computer scientists.

So-called high level languages allow practitioners of other fields (like psychology, and linguistics) to

enjoy the power and flexibility of programming. One of the goals of this chapter is to show how this is

feasible. Like in all fields, it is not possible to immediately benefit from practical applications without

knowing the fundamental principles underlying them. Hence, the next section is aimed at bringing you up

to speed with such principles.

Fundamental Concepts of Computer Programming

Fundamental programming concepts include (a) values and types, (b) syntax and semantics, (c)

operations, (d) variables, constants, and assignments, (e) data structures, (f) conditionals, (g) iterations,

and (h) functions. We start by presenting these concepts with step-by-step examples of programs written

in the Python language – a language whose simplicity seduces the most unwilling learners. While

reviewing these basic ideas we also present some programming constructs that are especially relevant for

NLP; these include strings, corpora, text files, input-output (I/O), etc. Before we begin, it is important to

consider the two steps involved in writing a program: pseudo-code (planning) and implementation

(executing). Finally, we will describe one important aspect of efficient code implementation: incremental

programming.

Pseudo-code

As you will see in the subsequent examples, Python has a quite intuitive syntax. In some respects, Python

syntax looks like pseudo-code. Pseudo-code is a high-level description of a program that makes no

reference to a particular language. For instance, Table 1 presents pseudo-code for a program that

translates sentences in a document. Each line is an instruction. The first line opens an input file and the

last line closes it. The lines in between translate each line in the file. Pseudo-code is important because it

provides a conceptual representation of what you intend to program, before you do any real programming.

Planning by using some kind of pseudo-code (whether purely textual or even graphical) is an important

part of conducting a successful programming project, because it very frequently unveils obstacles that you

did not originally foresee when you started to think about the problem. Once you have figured out what to

program (i.e., with a pseudo-code description), most of the remaining difficulties are mainly technical in

nature (i.e., how to program).

Table 1. Pseudo-code for translating a document.

Open the file.

For each line in the file,

 Translate the line.

Close the file.

Implementation

Learning to program is analogous to learning a new skill. It would be impossible to learn to ride a bicycle

by reading about bicycles. Reading programming books will not suffice. You need to get your hands dirty

and actually program things in conjunction with reading about them. Learning a programming language is

also similar to learning a real language. You learn a real language by placing yourself in new situations

where you have to communicate. Likewise you learn programming by putting yourself in new situations

where you have to solve new problems. This involves downloading resources, installing the required

software, setting up your working environment (e.g., a text editor or an Integrated Development

Environment), writing code, and executing it. The greater the variety of the problems you solve, the more

experienced of a programmer you will become.

Therefore, we cannot encourage you enough to download Python and reproduce all the examples

which are explained below. These examples all assume that you are using Python IDLE – the interactive

console and development environment provided with Python. Complete instructions are available on the

companion website. They tell you where to find Python, how to install it, and how to use the software that

can run your code. Get ready to see how user friendly Python is!

During this journey, if you are serious about implementing code, you will likely accumulate a

substantial amount of files containing either code or data (i.e., material generated or used by your

programs). Similar to how it is easier to find a document on a well ordered desktop than in a pile of

random papers, it will be useful for you to organize the files on your computer in an orderly manner. If

you are not familiar with the file system on your machine (i.e., how files and folders are organized, how

to create them, move them, etc.), you should consult the links available on the companion website. When

you are ready, create one folder on your machine. Let's call it the test folder. This is where you are

going to put all your files. Because you wish to provide a structure to your files, within the test folder,

create two other folders: the data and scripts folders, where you will place your data and your code,

respectively.

Incremental programming

Most problems will require programmers to implement their solutions step-by-step (i.e., increment by

increment), leaving some parts of the program untouched until they feel it is time to tackle them. Making

errors is a natural outcome of any programming activity, and it is best to work on a program one piece at a

time, so that one knows where the errors come from, rather than programming all aspects simultaneously.

In general, such a divide-and-conquer approach to programming is very efficient. Table 2 exemplifies the

order in which a programmer could have implemented the Pseudo-code exhibited in Table 1.

Table 2. The incremental approach to programming.

Open the file.

Open the file.

Close the file.

Open the file.

For each line in the file,

 print the line.

Close the file.

Open the file.

For each line in the file,

 translate the line.

Close the file.

(a) (b) (c) (d)

Panel (a) in Table 2 shows that the programmer first attempts to open the file. To implement this idea,

several lines might have to be written. The programmer works on that part until the result is satisfactory.

In Panel (b), one more component is added: closing the file. It is generally important to free a resource

that was mobilized when “opening” a file. Once this is working, it is typically a good idea to inspect the

content of the file, line by line, by printing each line on the screen, as shown on panel (c). If one can

realize such a simple step, then one can address the more involved operation of translating the line, as

shown on panel (d). Whereas panel (a) focused on the input to the program, panel (c) added a way of

producing some output. In general, it is useful to implement simple operations for introducing some

information from the external environment into your program (i.e., the input), and saving information

from your program in the external environment (i.e., the output), before addressing more sophisticated

parts of the program, like the translation step of panel (d). The next sections illustrate programming basics

with simple Python commands. Try them out by typing them or copying them from the website.

Values and Data Types

Programs contain instructions that tell the computer how to use values. Values can be of different types

(or “data types”). Table 3 provides examples. The prompt of Python IDLE (i.e., the signal that Python

expects an instruction) is represented by >>>. The commands follow that sign. To execute a command,

type it and then press the Enter key. The output resulting from the execution of the command is

displayed in bold characters. The first command in Panel (a) of Table 3 requires the computer to print a

value of the string type, and whose content is "Hello World!". A string is a sequence of characters

(letters, numbers, punctuation marks, and other special characters), usually surrounded by single quotes

('') or double quotes (""). To check that "Hello World!" is a string, use the second command in

Panel (a). Python IDLE prints a message indicating the type (i.e., str for string). Another type is the

integer, which corresponds to natural numbers like 1, 2, 3, etc. The first command in Panel (b) shows how

to print the integer 123. To check that it is indeed an integer, use the type command on the number, as

illustrated in Panel (b). If you surround the number by quotes it will be interpreted as a string.

Table 3. Examples of commands and outputs to understand values and types in Python.

>>> print "Hello World!"

Hello World!

>>> type("Hello World!")

<type 'str'>

>>> print 123

123

>>> type(123)

<type 'int'>

>>> type('123')

<type 'str'>

(a) (b)

Syntax and Semantics

As shown in Table 3, quotes are important to recognize strings. This simple example illustrates that a

programmer must respect the syntax of a language (i.e., rules) in order to express ideas in a program (also

called “code”). These ideas correspond to the semantics of the program (i.e., what it is supposed to do). In

other words, when we need to use natural numbers (i.e., a semantic constraint) we do not use quotes (i.e.,

a syntactical constraint). The syntactical aspect of a language is where beginners first stumble. Luckily for

them, a language like Python has a very gentle syntax, and this allows a beginner to readily focus on the

more interesting aspect of the language, namely its semantics and what it can do for the programmer.

Operations

Why are there several data types like strings and integers? It is because these values have different

properties, and allow the computer to perform different kinds of operations. Operations in a programming

language can modify values. For instance, strings can have an arbitrary content (e.g., on the screen you

could have printed "Hello World!" or the entire works of Shakespeare) but they do not support

conventional numerical operations (e.g., adding Othello to Hamlet does not result in a number). Contrary

to strings, integers must be natural numbers (e.g., 1, 2, 3, 4.5, 2.78) and you can perform conventional

numerical operations with them (e.g., addition, multiplication). Table 4 presents examples of operations in

Python.

Table 4. Examples of operations in Python.

>>> print 1 + 2

3

>>> 3 * 4

12

>>> "pine" + "apple"

'pineapple'

>>> 3 * "pine"

'pinepinepine'

>>> 1 + "pine"

Traceback (most recent call last):

 File "<pyshell#12>", line 1, in <module>

 1 + "pine"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

(a) (b)

Panel (a) requests Python to add 1 and 2 to obtain 3. The second command in Panel (a) shows how to

multiply 3 by 4 to obtain 12. Despite the fact that we did not use the print command, 12 is printed

because the Python interactive software prints values by default. In the context of numbers, the signs +

and * behave like arithmetical operators.

When a string is involved, their meaning is different. For instance, Panel (b) shows how to

concatenate the strings "pine" and "apple". This operation pastes the two strings to create a new string

– the string "pineapple". We then create a new string – the string "pinepinepine" – by repeating

"pine" three times. Finally we attempted to perform an invalid operation based on an erroneous use of

syntax, since it is not possible to add a string to an integer or concatenate a string with an integer (i.e., 1

+ "pine" is meaningless). Read the error message which is generated: it is very instructive, because it

mentions the key notions of operators, types, integer and string.

Variables, Constants, and Assignment

What happened to all the values we have created? As soon as "Hello Word!" is printed, or that 1 + 2

is computed, these values disappear, in the sense that if you want to reproduce these events again, you

need to repeat the commands used to create them. In order to maintain access to values in a program, you

need to give them a name. Names, like all kinds of words, are symbols which stand for (or represent)

values. For instance, the word car represents a four-wheel vehicle used by humans. It is mainly a matter

of convention. It could have been called something else, like platypus or bora-bora. The only thing which

matters is that the users of the word agree upon the convention. In programming terms, these names are

called variables.

Similarly to what happens in real life, the computer program will agree to identify variables by

respecting the labels you have adopted (i.e., that is by following your convention). To assign a label to

values, you use the equal sign (=). Table 5 gives some examples. Panel (a) in Table 5 shows how to

assign the value 3 to the variable X. If you then type X, the value 3 is displayed (i.e., the content referred

to by X is displayed).

Table 5. Examples of assignments in Python.

>>> X = 3

>>> X

3

>>> X = 1 + 2

>>> Y = 4

>>> X * Y

12

>>> X = 1

>>> X

1

>>> X = "Hello World!"

>>> X

'Hello World!'

>>> Name1 = "Patrick"

>>> Name2 = "Andrew"

>>> Name3 = "Sidney"

>>> S = ", "

>>> Authors = Name1 + S + Name2 + S + Name3

>>> Authors

'Patrick, Andrew, Sidney'

(a) (b) (c) (d)

What are variables useful for? Like we said, they represent the real value. That very simple fact helps us

to save lots of time. In the same way that in reality we do not need to have a cat, a mammoth, or a unicorn

in front of us to speak about them, in programming we simply use variables to realize operations on the

values the names refer to. For instance, in Panel (b), we multiply 3 by 4 by using the variables X and Y

instead of directly using the integers 3 and 4.

In Python, names whose values will change during the course of the program execution are called

variables; otherwise they are said to be constant. For instance, the value of X in Panels (a) and (b) never

changes, and so X is a constant. However, it changes in panel (c), and therefore, in that example it is a

variable. In other programming languages, you must specify from the start if a label is a variable or a

constant by using a particular syntax; there is no such rule in Python.

Python is also dynamically typed, in the sense that you decide at any time, what the data type of a

value is (i.e., you do not have to decide it from the start like in C or Java). For instance, Panel (c) shows

that X is assigned an integer, and then assigned a string. When this occurs, X represents the string "Hello

World!" and not the integer 1. This is because the string assignment statement followed the integer

assignment statement.

Finally, although the choice of labels is mostly a question of personal convention, there are few rules

you need to respect. First, you cannot use empty spaces in your variable names, you cannot start the

variable name with a number, and you cannot use certain keywords like if, and, def, return, which are

part of the Python syntax as variable names (see a Python introduction for details). Violating these rules

will result in a syntax error. Second, because programming is about saving time, you want your labels to

be meaningful. Panel (d) shows such labels for referring to our names (Name1, Name2, Name3, Authors).

For the program itself it does not matter (a computer is after all just a symbol crunching machine, which

does not understand symbols in the human sense), but it would save lots of trouble to any programmer

who tries to understand your program (including yourself at a later date).

Data Structures

The assignment of values to labels is only one step towards the power of abstraction behind a

programming language. Data structures are one step further. A data structures is basically a collection of

data that is organized for efficient and quick access. Instead of having a name referring to a simple value

(like a digit) we now refer to a collection of values. Just as some data types are better for some operations

than others, data structures have their own specializations. Table 6 provides examples of basic data

structures that are part of Python: strings, tuples, lists and dictionary.

Table 6. Examples of data structures in Python: string, tuple, list and dictionary.

>>> X = "abc"

>>> X

'abc'

>>> X * 2

'abcabc'

>>> X[0]

'a'

>>> X[1]

'b'

>>> X[0] = "z"

Traceback (most

recent call last):

 File

"<pyshell#34>", line

1, in <module>

 X[0] = "z"

TypeError: 'str'

object does not

support item

assignment

>>> X = "zbc"

>>> X = (1,2,"abc")

>>> X

(1, 2, 'abc')

>>> X * 2

(1, 2, 'abc', 1, 2, 'abc')

>>> X[0]

1

>>> X[0] = "z"

Traceback (most recent

call last):

 File "<pyshell#41>",

line 1, in <module>

 X[0] = "z"

TypeError: 'tuple' object

does not support item

assignment

>>> X = X + (7,8,9)

>>> X

(1, 2, 'abc', 7, 8, 9)

>>> X = [1,2,"abc"]

>>> X

[1, 2, 'abc']

>>> X * 2

[1, 2, 'abc', 1, 2, 'abc']

>>> X[0]

1

>>> X[0] = "z"

>>> X[3]

Traceback (most recent

call last):

 File "<pyshell#50>",

line 1, in <module>

 X[3]

IndexError: list index out

of range

>>> X = X + [7,8,9]

>>> X

[1, 2, 'abc', 7, 8, 9]

>>> X =

{'dog':'chien',

'mouse':'souris'}

>>> X['cat'] =

'chat'

>>> X

{'mouse':

'souris', 'dog':

'chien', 'cat':

'chat'}

>>> X['dog']

'chien'

>>> X['cat'] = 'z'

(a) (b) (c) (d)

The operations illustrated in these examples offer only a glimpse of the myriad of possibilities. You can

consult a programming reference to learn more about them. Moreover, external packages, or libraries

(often available on the internet) provide other specialized data structures. Finally you can build your own

data structures (for instance, a data structure to represent syntactical trees).

Let’s return to the string type. Unlike the integer type, the string type is made up of other types –

characters – which you can selectively access. Strings can be thought of as sequences of characters. For

instance, Panel (a) in Table 6 shows a string of three characters ("abc"). You can assign such a string to

a variable X. Type X and press the Enter key to make sure the string has been assigned to X. If you

multiply the string by 2, it will create a new string in which the initial string is repeated twice.

You can access the individual characters of a string by using an index surrounded by brackets. The

first character has the index 0, the second character the index 1, etc. Pay close attention to the fact that the

first element is indexed by the digit 0, and not by the digit 1! Indexing in Python starts at zero. This is a

common source of confusion for novice programmers. The last character corresponds to X[2]. Beyond

index 2, there is nothing, so you would get an error message by typing, say, X[3]. Moreover, strings are

immutable, which means that you cannot decide to selectively change one of its characters. For instance,

if you want to set the first element (i.e., the element whose index is 0) to "z", you get an error message.

To have a "z" instead of "a" you would need to reconstruct a string from scratch (i.e., "zbc") and

reassign it to the variable which pointed to your initial string (i.e., "abc").

Panel (b) shows a tuple made of three elements. A tuple represents a sequence of values (i.e., values

following each other in a strict order). Contrary to strings which only contain characters, tuples can

contain any type of values. In Panel (b), the first two elements of X are integers (1 and 2) and the last

element is a string ("abc"). Besides this exception, tuples are very much like strings. Similar to strings,

you can access the element of tuples with indices starting at 0. You will also get an error message if you

go beyond the range of available elements or attempt to change an element (i.e., tuples are immutable

too). As with strings you can repeat tuples (i.e., by using the multiplication operator) and use the

concatenation operator (i.e., “+”) to make bigger tuples.

Panel (c) illustrates the use of a list also made of two integers and a string. Note the change in syntax

(i.e., use of square brackets instead of parentheses). Lists are like tuples (e.g., you can multiply the list by

a number and obtain another list) except that lists are mutable. This means that you can selectively change

elements of a list. For instance, you can set the first element to "z". Lists are therefore more flexible than

tuples.

Dictionaries are a very powerful and frequently used data type. Panel (d) shows how to use the

dictionary data structure to map English words onto French words. You access the French words by using

the corresponding English words. X is first initialized to a dictionary whose key is dog and value chien,

etc (note the use of curly brackets and simple quotes). Note that the command is extended to more than

one line because it is too large for the column in Table 6. A third element is then added (with cat as a

key and chat as a value). Contrary to strings, tuples and lists which are ordered sets of elements,

dictionaries are not inherently ordered. Instead of using indices to access elements of a dictionary, you

access elements with the keys of any type (e.g., integers, strings, tuples). Similar to lists, you can reassign

new values to the elements of a dictionary (e.g., you can assign 'z' to the entry cat). In other words, like

lists, dictionaries are mutable.

The essential characteristics of the string, tuple, list and dictionary are summarized in Table 7.

Table 7. Comparing four data types in Python: string, tuple, list and dictionary.

Data type Is mutable Is a sequence Restrictions on values

String No Yes Characters only

Tuple No Yes None

List Yes Yes None

Dictionary Yes No None

In essence, (1) dictionaries and lists are mutable, but tuples and strings are not; (2) lists, tuples and

strings are sequences, but dictionaries are not; (3) dictionaries, lists, and tuples can contain different types

of elements, whereas strings only contain characters.

Conditionals

The preceding examples have portrayed programming as the execution of lines of code, one after the

other in a linear fashion. Although some simple programs might be organized this way, most programs

contain instructions to be executed in some circumstances, and avoided in others, depending on a test. If

the test is passed, then the corresponding lines of code can be executed. For instance, you could design

rules to determine the gender of Spanish names: if the name ends with the letter o (like in Mario), then the

person is a male, but if the name ends with the letter a (like in Maria), then the person is a female, etc.

Such if-then sequences are called conditionals (see the examples in Table 8).

Panel (a) shows a sequence of tests for the value of X. First X is assigned the value 2. The first

conditional assigns the value 0 to X if X is equal to 1 (note the use of the equality operator = =, different

from the assignment operator). The two other conditionals test whether X is smaller, or greater than 1.

Panel (b) shows the same program but where X is initialized to 1, instead of 2. Panel (c) uses the logical

operators (and, or, not). The first conditional checks whether X is equal to 1 and Y is greater than 3. The

second conditional checks whether X is equal to 1 or Y is greater than 3. The third conditional checks

whether it is true that Y is not greater than 3.

Table 8. Examples of conditionals in Python.

>>> X = 2

>>> if X == 1: X = 0

>>> X

2

>>> if X < 1: X = 3

>>> X

2

>>> if X > 1: X = 4

>>> X

4

>>> X = 1

>>> if X == 1: X = 0

>>> X

0

>>> if X < 1: X = 3

>>> X

3

>>> if X > 1: X = 4

>>> X

4

>>> X = 1

>>> Y = 2

>>> if X == 1 and Y > 3: print 'a'

>>> if X == 1 or Y > 3: print 'b'

'b'

>>> if not Y > 3: print 'c'

'c'

(a) (b) (c)

Iterations

Programs are especially helpful when they repeat operations a great number of times. For instance,

imagine that you have to count the number of persons who have a disyllabic name in the telephone

directory. One could easily write a program that reads the directory one entry at a time, checks whether

the name is disyllabic and increments a counter if that is the case. Iterations are one way to repeat lines of

code in a program. Recall that Table 1 involved pseudo-code that iterated through the lines of a document

and translated each line. Panel (a) in Table 9 first shows how to iterate through the characters of a string.

Note the use of a for ... in ... : syntax.

We can also iterate through the elements of a list, using the same syntax. Panel (b) shows how to

iterate through a dictionary. The first two for ... in ... : statements return the keys of the

dictionary (i.e., dog and cat), whereas the third statement returns the values (i.e., chien and chat). The last

statement returns tuples with both keys and values.

Panel (c) uses a while loop to iterate through the elements of a list. The index i is initialized to 0.

Then, while i is less than 3, we keep printing the i
th
 element of X and then increment i by one. The

while statement actually contains two commands, separated by a semicolon (;). Semicolons are used

when several commands are on the same line. The while statement has been repeated in Panel (c), this

time with one command per line. In that case, it is not necessary to use the semicolon. However, it is now

necessary to use some indentation in order to tell Python that these commands are to be executed “inside

that while loop”. This is called a nested structure. You can indent your code with the Tab key on your

keyboard.

Table 9. Examples of iterations in Python.

>>> X = "abc"

>>> for z in X: print z

a

b

c

>>> X = [1,2,3]

>>> for z in X: print z

1

2

3

>>> X = {}

>>> X['dog'] = 'chien'

>>> X['cat'] = 'chat'

>>> for z in X: print z

dog

cat

>>> for z in X.keys(): print z

dog

cat

>>> for z in X.values(): print z

chien

chat

>>> for z in X.items(): print z

('dog', 'chien')

('cat', 'chat')

>>> X = [1,2,3]

>>> i = 0

>>> while(i < 3): print X[i]; i=i+1

1

2

3

>>> i = 0

>>> while(i < 3):

 print X[i]

 i = i + 1

1

2

3

(a) (b) (c)

Functions

Functions are key components of programming abstraction. A function is like a mini-program which you

can invoke at any time in your program. For example, you might need to compute the average daily

balance of a million customers. This can be easily achieved by using a function for calculating the

average for one customer. This function can then be used a million times; once for each customer. In

another example, the rule for determining the gender of Spanish name could be placed in a function called

gender(). When you needed to apply the rules to a name, you would call this function and retrieve the

gender of a person. All the details associated with the rules to determine a person’s gender would be

conveniently hidden from you. The organization of your code would be improved, thereby allowing you

to navigate through it with ease. Functions makes it easier to engage in the incremental programming

approach described earlier (see Table 2). For instance, one could implement the example in Table 2, by

writing all the code except for a translate()function which would be fleshed out last. This approach is

illustrated in the implementation section of the NLP project in Part II.

Another advantage of functions is that you reuse functions programmed by other people or write your

own if you cannot find one to fit your needs. For instance, the type() command used Table 3 is a

function already defined in Python (i.e., you do not have to program it yourself). In further section, we

will explain how you can build your own functions.

Functions have parameters and return values. Return values are the values that functions generates

and can which can be reused inside the program. For instance, type(123) returns the string <type

'int'>. You could capture that string by assigning it to a variable: x = type(123). Parameters specify

how you can use a function. The type() function has an “object” parameter. One could formulate this by

writing type(object). In our previous example, we decided to inquiry about the type of the number

123, by calling the function type() with 123 as an argument: type(123). We call 123 an argument

because it is the specific values that we decide to assign to the “object” parameter of the function.

Table 10 illustrates the notion of functions that are available in an external library (i.e., outside of

your code). Defining your own functions is sometimes tricky, and it is often a significant time-saver to

reuse functions developed by other programmers who gave them careful thought. The library we are using

in this example is NLTK. The example was inspired by the second chapter of Bird et al (2009). It

illustrates how to load a sample of the Gutenberg corpus (http://www.gutenberg.org). The

Gutenberg project makes available over 30,000 free electronic books (eBooks). It was started in the 1970s

by Michael Hart and includes books like Alice in Wonderland (by Lewis Carroll), Moby Dick (by

Herman Melville), Roget’s Thesaurus, the Devil’s dictionary (by Ambrose Bierce), and the Bible. The

example has also been built step by step – from Panel (a) to Panel (h) – in order to illustrate the

incremental approach to programming, hereby stimulating you to adopt a similar attitude when you repeat

the examples, play with the code, or work on a programming project of your own. Panel (i) shows the

final result. In Panel (i), comments (in italics) have been added to the program to help you understand

what the code is doing. Comments must start with a # sign (called a hash, pound, or number sign). This

sign tells Python not to execute the statement that follows. It is a good practice to put a reasonable amount

of comments in your code in order to facilitate its readability and maintenance.

NLTK is designed as a Python module – a resource which is not inherently provided with Python but

can be imported at will. To import the NLTK module, we use the import statement at the beginning of

the code. But before being able to import the module you need to download and install it on your machine

(see the companion website for instructions). In Panel (a), there is an import statement to load the real

division function (pay attention to the use of double underscores). Depending on the version of Python

you use you may not need that statement. In some versions of Python, the division sign (/) does not

behave like the conventional division operator, and that statement is therefore necessary. A second

import statement loads NLTK. Finally a third import statement refers to the NLTK sample of

Gutenberg corpus.

Table 10. Use of external functions present in the NLTK module.

(a) from __future__ import division

import nltk

from nltk.corpus import gutenberg

(i)

(b) path = "C:/test/data/nltk"

nltk.data.path = [path] + nltk.data.path

import

from __future__ import division

import nltk

from nltk.corpus import gutenberg

path

path = "C:/test/data/nltk"

nltk.data.path = [path] + nltk.data.path

for each file in the corpus, get its id

for id in gutenberg.fileids():

get number of characters

NC = len(gutenberg.raw(id))

get number of words

NW = len(gutenberg.words(id))

get number of sentences

NS = len(gutenberg.sents(id))

average word length (in characters)

AWL = NC / NW

average sentence length (in words)

ASL = NW / NS

print on the screen

print AWL, ASL, id

(c) for id in gutenberg.fileids(): print id

(d) for id in gutenberg.fileids():

 print id

(e) for filename in gutenberg.fileids():

 print filename

(f) for id in gutenberg.fileids():

 NC = len(gutenberg.raw(id))

 print NC

(g) for id in gutenberg.fileids():

 NC = len(gutenberg.raw(id))

 NW = len(gutenberg.words(id))

 print NC / NW

(h) for id in gutenberg.fileids():

 NC = len(gutenberg.raw(id))

 NW = len(gutenberg.words(id))

 NS = len(gutenberg.sents(id))

 AWL = NC / NW

 ASL = NW / NS

 print AWL, ASL, id

In Panel (b), to make sure that NLTK knows where to find the corpus, we set a path variable, and we add

it to the list of paths called nltk.data.path which is provided by NLTK (Panel b). To add a new path

to the list, we turn the path (a string data type) into a list, by surrounding it with brackets ([]). The +

operator becomes in this context a concatenation operator and adds the two lists together to form a larger

list. The specific path you will use will depend on where you decided to install the NLTK corpora. Please

see the website for further instruction regarding the confusing topic of system path. It is not particularly

complicated to understand, but it might be intimidating for the novice.

In Panel (c), we iterate through all files of the corpus, retrieving the name of each file (e.g.,

carroll-alice.txt, Shakespeare-hamlet.txt) in a list with the fileids() function. That code

is interesting because, if it executes properly, not only can we see all the files in the corpus, but we also

know that we have access to the corpus through the NLTK module! Once again, this illustrates the

incremental approach to programming. When you develop your code for the first time, it is preferable to

ensure that the basic elements of your code function properly before engaging in more sophisticated

operations. Pay close attention to the fact that we did not have to define the fileids() function; it is

provided by NLTK, and we are happy to use it! Finally, note that all of this is done on one line. This is

not practical in more complex situations, so a more readable version of the code is presented in Panel (d).

As you may have noticed, the filename being printed is contained in a variable called id. We could

have called it filename, like in Panel (e). The choice does not really matter so far as we are consistent

with ourselves (see a Python introduction for more coverage on that topic). However, the name

fileids() is fixed, and we must use it if we want to invoke that function.

Inside the loop presented in Panels (c)-(e), more interesting operations than printing can occur. In

panel (f), we use the raw() function of the Gutenberg corpus to retrieve all the characters of the file in a

string. We provide the result of that function to another function which, this time, is built into Python

(i.e., is not part of NLTK): the len() function (short for length). In this context, len() counts the

number of characters (i.e., the length of the string in characters). That count is then assigned to the NC

variable, whose content is finally printed. The len() function is very useful and flexible function which

will adapt its behavior to different data types. For instance, for a list A, len(A) will count the number of

elements in A.

Panels (g) and (h) represent two more steps in our incremental programming journey. In (g) we

retrieve the words through the words() function. After counting the number of words, and dividing the

number of characters by the number of words, you get the average size of words in terms of characters. In

Panel (h) we retrieve the number of sentences through the sents() function, and compute the average

size of sentence in terms of words. Three values are then printed. Pay attention to the commas in the print

statement. These commas serve to separate the three values within a tuple. What is therefore being printed

is a tuple. Again, play around with the code (e.g., compute the average size of sentence in terms of

characters) to gain further insight.

Imagine the time you are saving by using functions to access text files and information without

having to deal with the difficult aspects of file manipulation, tokenization (i.e., character and word

recognition), and sentence splitting. As is apparent in Chapter XXX of this book, such operations are time

consuming. Panel (i) shows the final code.

What would you do if you had to repeat the same operations for other corpora? For instance, you may

want to repeat the exercise for the book of Genesis, translated in several languages, also available through

NLTK. Would it not be annoying to rewrite the same lines of code? The good news is that you can embed

any part of your program in a function and make it generic enough so that you can reuse it in multiple

contexts (i.e., Gutenberg, the book of Genesis, etc.). Panel (a) in Table 11 shows precisely how to do that

by creating a getCorpusInfo() function.

A function definition starts with a def keyword, then the name of the function (getCorpusInfo),

followed by parentheses and, possibly one or more parameters. In the case of getCorpusInfo() there

is only one parameter (corpus) which stands for the name of the corpus (whatever it is) that is going to

be used when the function is invoked. The def statement ends with a colon (:), and the rest of the

program is similar to Table 10 with the exception that, first, there is another layer of indentation; second,

we removed the comments; and, third, we replaced the name gutenberg, by the more generic name

corpus. When the function has been defined, you simply need to import the corpora, and then use the

getCorpusInfo() function with the name of your corpora passed as an argument to the function (e.g.,

getCorpusInfo(Genesis)).

Table 11. Defining your own functions.

import

from __future__ import division

import nltk

from nltk.corpus import (gutenberg, genesis)

path

path = "C:/test/data/nltk"

nltk.data.path = [path] + nltk.data.path

my function

def getCorpusInfo(corpus):

 for id in corpus.fileids():

 NC = len(corpus.raw(id))

 NW = len(corpus.words(id))

 NS = len(corpus.sents(id))

 AWL = NC / NW

 ASL = NW / NS

 print AWL, ASL, id

get information about each corpus

getCorpusInfo(gutenberg)

getCorpusInfo(genesis)

import

from __future__ import division

import nltk

from nltk.corpus import (gutenberg, genesis)

path

path = "C:/test/data/nltk"

nltk.data.path = [path] + nltk.data.path

my functions

def getCorpusInfo(corpus):

 for id in corpus.fileids():

 getTextInfo(id, corpus)

def getTextInfo(id, corpus):

 NC = len(corpus.raw(id))

 NW = len(corpus.words(id))

 NS = len(corpus.sents(id))

 AWL = NC / NW

 ASL = NW / NS

 print AWL, ASL, id

get information about each corpus

getCorpusInfo(gutenberg)

getCorpusInfo(genesis)

getTextInfo("austen-emma.txt", gutenberg)

getTextInfo("french.txt", genesis)

(a) (b)

An excerpt of the result of applying the function is displayed in Figure 1. On Figure 1, you can see there

that the average word length of the texts from the Gutenberg corpus does not vary very much (i.e.,

between 4 and 5 for every line), as explained in Bird et al (2009) because they all are English texts and

the English language exhibits this property. When you explore the Genesis corpus, you realize that the

variability increases, probably because the corpus contains texts written in different languages.

 >>> getCorpusInfo(Gutenberg)

4.60990921232 18.3701193317 austen-emma.txt

4.74979372727 23.6841978287 austen-persuasion.txt

4.75378595242 21.8144838213 austen-sense.txt

4.28688156382 33.5843551657 bible-kjv.txt

(...)

>>> getCorpusInfo(genesis)

4.3676838531 30.6183310534 english-kjv.txt

4.28260770872 19.7374551971 english-web.txt

5.94474169742 15.0834879406 finnish.txt

3.44761394102 40.367965368 swedish.txt

Figure 1. Using functions and NLTK to analyze different corpora.

The main difference between Panel (a) and Panel (b) is that we made a subpart of the original

getCorpusInfo() function, a function in its own right, and called it getTextInfo(). By doing so, we

modularized our code and increased its flexibility. For instance, by separating a getCorpusInfo()

function and a getTextInfo() function, we can call getTextInfo() and therefore obtain information

on only one text (instead of information on all texts). Moreover, when we are working on the code, we

may modify one function without having to alter the other one.

Text File Input/Output

After going through all the examples presented so far, you most likely have learned important concepts

but all the output which has been produced on the screen is now gone, or waiting for you to be manually

copied in a text file, etc. Would it not be simpler if you could save the output information directly to a

file? Similarly, what would you do if you wanted to open a text file, read it, process its contents, and save

it under another name? These steps are the landmarks of many NLP programs which primarily handle text

files. To illustrate these operations, you may for instance use the text displayed in Table 12.

Table 12. A sample from the Devil’s Dictionary.

BEG, v.

DENTIST, n.

LANGUAGE, n.

LIBERTY, n.

MEDAL, n.

NEPOTISM, n.

PAINTING, n.

PLAN, v.t.

SCRIBBLER, n.

TRUTHFUL, adj.

To ask for something with an earnestness proportioned to the belief that it will not be given.

A prestidigitator who, putting metal into your mouth, pulls coins out of your pocket.

The music with which we charm the serpents guarding another's treasure.

One of Imagination's most precious possessions.

A small metal disk given as a reward for virtues, attainments, or services more or less authentic.

Appointing your grandmother to office for the good of the party.

The art of protecting flat surfaces from the weather and exposing them to the critic.

To bother about the best method of accomplishing an accidental result.

A professional writer whose views are antagonistic to one's own.

Dumb and illiterate.

The text presented in Table 12 is composed of ten entries extracted from the Devil’s Dictionary by

Ambrose Bierce. Type each entry on a separate line in a text file and save the file as dictionary.txt in

the data folder. Or simply, copy and paste these lines from the companion website into a text file.

Panel (a) in Table 13 shows how to print the objects in your data directory (i.e., files and folders).

There is an import statement for the os (i.e., operating system) module. The listdir() function

returns a list of objects found in the path (p) passed as an argument. After executing that code, you should

at least see dictionary.txt in the list displayed on the screen. In panel (b) we then add the filename

dictionary.txt to the path. We import the fileinput module (a module to read and save files).

Then, for each line in the file, we print the length of the line (in number of characters). Finally the input

file is closed with the close() function. In Panel (c), two paths are set, one for the input

(dictionary.txt) and one for the output (dictionary.out.txt). The built-in open() function

specifies that a file must get ready to receive information in appending mode (i.e., the file will add text

incrementally). For each line, we compute the length (in characters), print the length of the line and the

line itself to the output file. The length of the line and the line are separated by a tabulation (represented

by a tab sign \t). Finally we close the input and the output.

This short example of file operations concludes Part I. Although Part I was about programming

basics, we have already laid a foundation for solving NLP problems. Part II builds on this foundation by

concretely showing how to conduct an NLP project.

Table 13. Processing text files in Python.

set path

p = "C:/test/data"

import

import os

for each object

for x in os.listdir(p):

 print x

set path

p = "C:/test/data"

p = p + '/dictionary.txt'

import

import fileinput

for each line

for li in fileinput.input(p):

 L = str(len(li))

 print L + " :: " + li

close

fileinput.close()

set path

p = "C:/test/data"

p_in = p + '/dictionary.txt'

p_out = p + '/dictionary.out.txt'

import

import fileinput

open file for saving

out = open(p_out, 'a')

for each line

for line in fileinput.input(p_in):

 L = str(len(line))

 print line

 info = L + "\t" + line

 out.write(info)

close

fileinput.close()

out.close()

(a) (b) (c)

PART II. A STEP-BY-STEP EXAMPLE

The chapter so far has been focused on programming basics. The section on Functions in Part I included

an example of reuse of resources (NLTK) within a Python program (see Tables 10 and 11). That

application was however not motivated by any specific NLP requirements. In other words, we were not in

a situation in which we had to solve a particular problem. In this section, we describe an actual NLP

problem and a possible solution. This problem and its solution have been chosen to offer a reasonable

degree of complexity to both the novice and the more advanced programmer. The companion website

includes other problems and solutions with various degrees of complexity and implemented in different

programming languages (e.g., Python, Perl, and Java).

The Problem of Predicting the Speed of Lexical Access

The problem we will tackle in this section is fairly complicated, and we will only propose one possible –

and easy to understand – solution. Humans have the remarkable ability to learn and use language. When

they read a text they need to access the meaning of words in order to construct the meaning of sentences.

Contrary to programming languages, with unambiguous semantics, natural languages contain numerous

semantic ambiguities. For instance, a word like page is ambiguous in that it can refer to the side of a sheet

of paper, as well as to a young person employed to do errands. Humans are usually very good at

determining which meaning of a word is intended in a given text by examining the context surrounding

the words.

Although humans seamlessly perform semantic disambiguation activities, the underlying cognitive

processes employed for this task are not fully understood. Actually, even a seemingly simple step such as

recognizing that a word is known (i.e., to access it in the mental lexicon) is still the topic of much

research. Psycholinguistic experiments have demonstrated that it takes some time (several hundred

milliseconds) to decide whether written words are known or not, and that response time is influenced by

the different meanings of the words. In such experiments, words are presented on a computer screen, one

at a time. In typical experiments, the participant has to decide whether a stimulus word is an existing word

(e.g., page) or if it is a non-word (e.g., gepa), by pressing one of two keys on the keyboard. The number

of milliseconds elapsed between the time the word (or non-word) is displayed and the time the key is

pressed is called the response time, and is our primary measure of interest.

Many useful insights have been gleaned with this rather simple experimental protocol. For instance,

Rodd, Gaskell and Marslen-Wilson (2002) found out that it takes on average longer to recognize

ambiguous words (i.e., to establish that they are existing words) like page than unambiguous words like

load. In one of their experiments, they operationalized ambiguous words as ones that had more than one

entry in the Wordsmyth Dictionary (Parks et al., 1998). For instance, the word page has two different

entries whereas the word load has only one entry.

Moreover, Rodd et al (2002) demonstrated that the number of senses of the words also had an impact

on the speed of lexical access. By senses they referred to all the meanings that a word could have,

whether these meanings were semantically related or not. For instance, in the Wordsmyth Dictionary, the

first entry of the word page (the “sheet of paper”) corresponds to a variety of senses including the content

of the paper, an instance from the past (like in “a page of history”), the act of turning pages, etc.

Similarly, the second entry of the word page (the “young person”) has several senses including a young

person who attends to a king or the act of calling someone via electronic communication (i.e., with a

pager). Most interestingly, they found out that the number of senses has a reverse effect on lexical access

time: while more ambiguity slowed down response time, more senses sped it up.

Several psychological accounts attempt to explain the impact of ambiguity and number of senses on

response times (see Rodd et al, 2002). What matters for our limited NLP exercise, however, is the

information about ambiguity and number of senses can be used to automatically predict response time.

Such an automated application could be used to design experimental material, develop more efficient

advertising campaigns. It can even find use in applications aimed at assessing text difficulty (e.g.,

Graesser, McNamara, Louwerse, & Cai, 2004). Although many more factors could potentially influence

the ease of lexical access (Rayner, 1998; Rodd et al, 2002), semantic ambiguity and number of senses

seem to be two important factors to take into account. For the sake of this example we define our NLP

problem as follows: given any word, estimate its ambiguity, number of senses, and response time. The

next section offers a simple solution to this problem.

Designing a Solution

The first question of course is what knowledge and what computations shall we use to do the job? Our

problem actually involves three sub problems. The first one pertains to determining the ambiguity of a

word. The second one concerns counting the number of senses of the word. The third one deals with

determining the response time, on the basis of ambiguity and number of senses. For the first sub-problem,

we know from the previous description of Rodd et al's (2002) experiment that they have used the online

Wordsmyth dictionary to retrieve the number of entries associated with a given word; this is their measure

of ambiguity. So we need some way to extract information from the online Wordsmyth dictionary.

Although one could imagine accessing the online Wordsmyth dictionary from within the program, it is

not convenient (e.g., when an internet connection is not available). Moreover, accessing online resources

through artificial means (i.e., web crawlers etc) is usually discouraged by developers of online services.

Hence, we decided to download a freely accessible dictionary which had a similar structure to the

Wordsmyth dictionary. The dictionary we chose to use is the GNU version of the collaborative

international dictionary of English, presented in the Extensible Markup Language (GCIDE_XML; Dyck,

2002).

For the second sub-problem, among other things, Rodd et al (2002) relied on WordNet (Miller, 1995).

WordNet is a widely used online resource and was designed to serve as a lexical resource that was

organized according to the principles underlying human semantic memory (the organization of words in

terms of meaning). Moreover, WordNet is organized in terms of senses – whether they are semantically

related or not – and contains information that is not readily available in conventional dictionaries such as

the Wordsmyth dictionary or the GCIDE. Finally, it is also accessible in Python through the NLTK

module (Bird et al, 2009). These advantages make WordNet look like an ideal candidate for a solution

written in Python. A broad overview of our problem and its solution is depicted in Figure 2.

Figure 2: General representation of the problem and its solution

Pseudo-code for the general procedure used in the program to produce the number of entries, the number

of senses, and the predicted response time is presented in Table 14.

Table 14. Pseudo-code describing the general procedure of the program.

Load all the words into a dictionary W.

For each word w in W
1
,

 # Pseudo-code to obtain ambiguity

 Open the page of GCIDE where you can find the word w.

 Count the number of entries for the word w.

 If that number is greater or equal to an “ambiguity threshold”,

 the word w is ambiguous; otherwise it is unambiguous.

 Close the page of the GCIDE.

 # Pseudo-code to get number of senses

 Retrieve the number of senses in WordNet for the word w.

 If that number is greater or equal to a “sense threshold”,

 the word w has many senses; otherwise it has few senses.

 Predict the mean response time of the word w.

 Add the new information about the word w to the dictionary W.

Evaluate the quality of the classification.

Write the information stored in W to a file.

To test our program we plan to read a text file containing the words from Rodd et al's (2002) Experiment

2. For evaluation purposes, the text file will also indicate whether the words are ambiguous or not, and

whether they have many senses or not, as indicated in Rodd et al's (2002) Appendix B. Table 15 displays

the first five lines of this file. This information is loaded in a dictionary W. For each word w in W, the

number of entries of w is first determined by consulting the GCIDE. Based on the number of entries in the

1 Note that w (lower case) refers to a word in the dictionary W (upper case).

GCIDE and a preset “ambiguity threshold” we decided if w is ambiguous or not. The number of senses is

then retrieved from WordNet. This information, coupled with a preset “sense threshold” is used to decide

if w has few or many senses. These two pieces of information are used to predict the mean response time

for w. These findings are saved in the main dictionary W. When all words have been processed, W is saved

to a file, and the quality of the obtained classification (ambiguous vs. unambiguous; few senses vs. many

senses) is evaluated by comparing it to results reported in Rodd et al (2002).

Table 15. Five first lines of input to the program; data is from Rodd et al's (2002) Experiment 2.

Word Ambiguous

(1 = yes ; 0 = no)

Has many senses

(1 = yes ; 0 = no)

ash 1 0

duck 1 1

heap 0 0

roll 0 1

The pseudo-code of Table 14 left out some essential information such as the threshold values and how to

compute the mean response time from ambiguity and number of senses. We turn to Rodd et al's (2002)

experiment for this data. The authors defined ambiguous words as ones with two or more entries in the

Wordsmyth dictionary. Unfortunately, the GCIDE has more entries than the Wordsmyth dictionary,

which will likely lead to an overestimation of the number of ambiguous words when applying Rodd et al's

(2002) rule. For this reason, the optimal value for our threshold will have to be estimated from the data.

This task will be tackled in the Implementing the Solution section.

Similarly, Rodd et al (2002) used a procedure to determine whether a word has many senses or only a

few. That rule however was not made fully explicit, and relied on both the Wordsmyth dictionary and

WordNet. For the sake of simplicity we decided to use a simple threshold based on the number of senses

extracted from WordNet, and estimated this threshold from the data similar to the ambiguity threshold.

The predicted response times correspond to the mean response times of Rodd et al's (2002)

Experiment 2. The “prediction” is simply the assignment of one of five mean response times, depending

on the nature of the word: 587 ms for ambiguous words with few senses, 578 ms for ambiguous words

with many senses, 586 ms for unambiguous words with few senses, 567 ms for unambiguous words with

many senses and 659 ms for non-words.

Implementing the Solution

The following description is a step-by-step implementation of the program. That description involves nine

steps. You will find the corresponding nine versions of the script on the companion website. This step-by-

step implementation follows the incremental approach to programming which has been advocated at the

beginning of this chapter. You should be able to execute each step of the program in the Python interface

and analyze its behavior.

Step 1 lays down the general structure of the program (see Table 16). Let's read it from bottom to top.

The main program is located at the bottom of the code. It calls four functions (load_words(),

process_words(), evaluate_results(), and save_results()) that we need to be defined. The

load_words() function will load the input material in the format specified in Table 15. The

process_words() function will generate the results we attempt to achieve. The

evaluate_results() function will evaluate those results, and the save_results() function will

save them to a file. Above the main program, a functions definitions section contains place holders for

these definitions, using the pass keyword to tell Python to ignore these incomplete definitions. We will

implement these functions one by one, following the natural progression from the input to the output. A

parameter section will contain data which the user of the program will be able to change at will (e.g.,

specifying other values for the path to the input data file). The words_input_path variable contains the

path to the input material, it is used as an argument of the load_words() function to load the desired

material. The import section is still empty but will contain import statements as needed.

Table 16. The general structure of the program.

import

parameters

words_input_path = "C:/test/data/Rodd_et_al_2002_experiment_2.txt"

functions definitions

def load_words(input_path): pass

def process_words(): pass

def evaluate_results(): pass

def save_results(output_path): pass

main program

print "--- START"

words = load_words(words_input_path)

process_words()

evaluate_results()

save_results(output_path)

print "--- END"

Step 2 consists of implementing the load_words() function (see Table 17). Since it uses the

fileinput Python module, we need to add an import statement accordingly. This function initializes a

dictionary called W, and stores information about each word, using the word as a key in the dictionary W.

More detailed comments about this function are available in the function itself (Table 17).

Table 17. The load_words() function.

import

import fileinput

parameters

(...)

def load_words(input_path):

 W = {} # initialization of the dictionary

 i = 0 # counter used to skip the first line of the file because it is a header

 for line in fileinput.input(input_path):

 i = i + 1

 if i == 1: continue # if this is the first line, skip it (i.e., continue to the next line)

 line = line.strip() # remove the white character at the beginning and end of the line

 information = line.split("\t") # split the file, using the tab as a separator

 (word, ambiguous, many_senses) = information # assign its elements to distinct variables

 W[word] = {} # initialize a dictionary in the dictionary with that word as a key

 W[word]["ambiguous"] = int(ambiguous) # we record the value, converting it to an integer

 W[word]["many_senses"] = int(many_senses)

 fileinput.close()

 return W # we return the dictionary

In step 3, we implement the process_words() function (see Table 18). It will apply five other functions (for

which we create place holders), for each word in W. We will now implement each of them, one at a time.

In step 4, the retrieve_number_of_entries() function is implemented (see Table 19). The path to

the folder containing the GCIDE is defined in the parameters section. The parentheses (…) are not part

of the program but indicate that a portion of code has been skipped. The function will be looking for the

word surrounded by two HTML tags (<hw>, </hw>), which is the way separate entries are distinguished

in the GCIDE. Since the dictionary is distributed on separate files (one for each letter of the alphabet), the

first letter of the word is extracted in order to identify the file in which the word must be searched. The

file is then opened and read line by line, while counting the number of times the word is encountered.

Table 18. The process_words() function.

def process_words():

 for word in W:

 print word

 retrieve_number_of_entries(word)

 determine_word_ambiguity(word)

 retrieve_number_of_senses(word)

 determine_if_word_has_many_senses(word)

 predict_mean_response_time(word)

def retrieve_number_of_entries(word): pass

def determine_word_ambiguity(word): pass

def retrieve_number_of_senses(word): pass

def determine_if_word_has_many_senses(word): pass

def predict_mean_response_time(word): pass

Table 19. The retrieve_number_of_entries() function.

parameters

GCIDE_xml_path = "C:/Resources/Various/P/Programming/NLP/chapter/data/gcide_xml"

(...)

def retrieve_number_of_entries(word):

 target = "<hw>"+word+"</hw>" # the target is the word with HTML tags

 target = target.upper() # we convert to upper case letters for normalization purposes

 first_letter = word[0] # we extract the first letter of the word

 path = GCIDE_xml_path + "/gcide_" + first_letter + ".xml" # define the file to the page

 entries = 0 # we initialize the counter for number of entries

 for line in fileinput.input(path):

 line = line.upper() # to upper case letter, again for normalization purposes

 line = line.replace('`', '') # ` characters are removed

 line = line.replace('"', '') # " characters are removed

 line = line.replace('*', '') # * characters are removed

 if target in line: entries = entries + 1 # if we find an entry, we count it

 fileinput.close()

 W[word]["number_of_entries"] = entries # record the number of entries

One will note that this is a time consuming operation, which will be unduly repeated for each word. For

instance, a same dictionary page will be read twice for two words with the same first letter. Our function

is more straightforward from an instructional point of view and could be replaced by a more

computationally efficient one. A standard approach would be to read all words into a dictionary similar to

W and store it for later reuse.

In step 5, the determine_word_ambiguity() function is developed (see Table 20). It stores a

value of 1 for words whose number of entries are greater than or equal to a specified threshold.

Table 20. The determine_word_ambiguity() function.

parameters

ambiguity_threshold = 4

(...)

def determine_word_ambiguity(word):

 if W[word]["number_of_entries"] >= ambiguity_threshold:

 W[word]["predicted_ambiguity"] = 1

 else:

 W[word]["predicted_ambiguity"] = 0

In step 6, the retrieve_number_of_senses() and determine_if_word_has_many_senses() functions

are implemented. The import section is modified to import the NLTK module. The parameters section is

modified to include the path to the NLTK resources. The retrieve_number_of_senses() function

simply counts the number of senses retrieved from WordNet. The senses for any given word are accessed

by NLTK through the synsets() function which returns a list of senses. The size of that list is then

calculated by the len() function.

Table 21. The retrieve_number_of_senses() and

determine_if_word_has_many_senses() functions.

import

import fileinput, nltk

parameters

NLTKp = "C:/test/data/nltk"

nltk.data.path = [NLTKp] + nltk.data.path

senses_threshold = 9

(...)

def retrieve_number_of_senses(word):

 number_of_senses = len(nltk.corpus.wordnet.synsets(word))

 W[word]["number_of_senses"] = number_of_senses

def determine_if_word_has_many_senses(word):

 if W[word]["number_of_senses"] >= senses_threshold:

 W[word]["predicted_many_senses"] = 1

 else:

 W[word]["predicted_many_senses"] = 0

In step 7, the predict_mean_response_time() function is implemented. It simply assigns the values

(in milliseconds) which are defined in the RT dictionary in the parameters section. The values of RT come

from Rodd et al's (2002) Table 8. A word which has a number of senses equal to zero is considered as a

non-word and therefore assigned the response time associated to non-words.

Table 22. The predict_mean_response_time() function.

parameters

RT = {}

RT["ambiguous_few_senses"] = 587

RT["ambiguous_many_senses"] = 578

RT["unambiguous_few_senses"] = 586

RT["unambiguous_many_senses"] = 567

RT["nonwords"] = 659

(...)

def predict_mean_response_time(word):

 if W[word]["number_of_senses"] == 0:

 W[word]["predicted_response_time"] = RT["nonwords"]

 else:

 ambiguity = "unambiguous"

 senses = "few_senses"

 if W[word]["predicted_ambiguity"] == 1:

 ambiguity = "ambiguous"

 if W[word]["predicted_many_senses"] == 1:

 senses = "many_senses"

 W[word]["predicted_response_time"] = RT[ambiguity + "_" + senses]

In step 8, we implement the evaluate_results() function (see Table 23). It starts by building six

lists, A, B, A1, A2, B1, and B2 with the codes corresponding to our classification as well as to the data of

Rodd et al (2002). The lists A and B are made of tuples – one tuple per word – where each tuple consists

of two integers (0 or 1). Each tuple is therefore either (0,0), (1,0), (0,1) or (1,1). The first integer

specifies whether the word was classified as ambiguous (1) or not (0), whereas the second integer

represents whether the word was classified has having many (1) or few (0) senses. The procedure we have

decided to use to build these lists of tuples employs the list comprehension feature of Python. It is

essentially a device to build lists in a more concise way. Basically, we iterate through W for each word w,

and build a tuple with the ambiguity value and the sense value for w. All these tuples are then put in a list.

The list A corresponds to the classification made by our program whereas the list B corresponds to the

classification of Rodd et al (2002). We then compare these two classifications through a

confusion_matrix() function. That function builds a confusion matrix through a function provided by

NLTK (similar to the one displayed on Table 25). The percentage of correct responses is then computed.

Finally, the matrix and the percentage are displayed on the screen. Note that at the time of the writing the

operator division truncated the result of the division to an integer in the presence of integer operands (e.g.,

7/2 would give 3 instead of the expected 2.5). In order to change that behavior it was necessary to add

the from __future__ import division statement at the top of your file.

In order to evaluate the ambiguity classification separately from the sense classification we build four

more lists: A1 and B1 for ambiguity classification and A2 and B2 for sense classification. These new lists

are obtained by transferring the corresponding members of each tuple to separate lists, through the zip()

function. The asterisk preceding the argument in that function (e.g., zip(*A)), is a way of telling Python

to “unzip” the members of the tuples to separate lists. Confusions matrices are finally constructed for

these two groups.

Table 23. The evaluate_results() and confusion_matrix() functions.

import

from __future__ import division

import fileinput, nltk

(...)

def evaluate_results():

 A = [(W[w]["predicted_ambiguity"],W[w]["predicted_many_senses"]) for w in W]

 B = [(W[w]["ambiguous"],W[w]["many_senses"]) for w in W]

 confusion_matrix(A, B) # analyze our joint classification in terms of ambiguity and senses

 A1, A2 = zip(*A)

 B1, B2 = zip(*B)

 confusion_matrix(A1, B1) # analyze our ambiguity classification

 confusion_matrix(A2, B2) # analyze our senses classification

def confusion_matrix(reference, test):

 CM = nltk.ConfusionMatrix(reference, test) # build the confusion matrix

 percent_correct = CM._correct / len(reference)

 print CM

 print "correct = " + str(round(percent_correct, 2)) + " % "

The two thresholds used in our program have been estimated by running the program with different

values, and keeping the values corresponding to the best performance. Table 24 displays the proportion of

correct classifications for ambiguity and senses for different values of the thresholds.

The best results were obtained with an ambiguity threshold of 4 and a sense threshold of 9. The

combined classification in terms of ambiguity and sense resulting from using these two threshold values

has a 69% accuracy. The confusion matrix for this classification is displayed in Table 25. The rows

contain the reference classifications (i.e., the ground truth) (Rodd et al, 2002). The columns contain

classifications from our program. The cells in the diagonal correspond to correct classifications (n = 88),

whereas the cells off the diagonal correspond to incorrect classification (n = 40).

Table 24. Proportions of correct classifications for ambiguity and senses depending on the threshold.

Ambiguity Senses

Threshold Proportion of correct classifications Threshold Proportion of correct classifications

2 0.55 6 0.77

3 0.61 7 0.86

4 0.77 8 0.88

5 0.68 9 0.89

6 0.6 10 0.84

7 0.54 11 0.75

It is important to note that this validation process is only a first step towards ensuring the quality of our

program. If we were confident that the principles behind our program were worth pursuing, we could

cross-validate it or validate it using another data set (see Manning & Schütze, 1999). However, an

analysis of the classification errors made by our program might motivate us to try improving the resources

or mechanisms that we use in order to reproduce Rodd et al’s (2002) classification. Indeed, 75 % of the

errors were cases in which our program overestimated the number of entries or the number of senses

compared to the reference. More precisely, about half of the errors were unambiguous words (as per the

reference) classified as ambiguous words by our program.

Table 25. Confusion matrix with ambiguity threshold = 4 and sense threshold = 9.

 Our classification

Reference

(Rodd et al, 2002)

 Unambiguous Ambiguous

Few senses Many senses Few senses Many senses

Unambiguous Few senses 29 4 13 2

Many senses 1 23 1 6

Ambiguous Few senses 2 0 16 4

Many senses 0 5 2 20

Reusing a local copy of the Wordsmyth dictionary (instead of the GCIDE) would improve the results.

Another method would be to filter out the senses which are too strongly related (and which might be

counted as separate entries in the GCIDE). Finally, about a quarter of the errors were words with few

senses (as per the reference) classified as having many senses by our program. Here again, it would be

helpful to detect the senses which are too strongly related, in order to decrease the number of senses

considered as distinct.

At step 9, the classification is saved to a file (see Table 26). The os module is imported. The path to

the output file is specified. A list with column names is specified. It contains the name of key variables in

the W dictionary. In the save_results() function, the presence of the output is first detected. The file is

removed if it already exists. The column names are then added, separated by tabs (\t). Finally, the data

in W is written to the file, one word per line.

Table 26. The save_results() function.

import

from __future__ import division

import fileinput, nltk, os

(...)

parameters

output_path = "C:/test/data/Rodd_et_al_2002_experiment_2_output.txt"

column_names = ["number_of_entries", "number_of_senses"]

column_names.append("predicted_ambiguity")

column_names.append("predicted_many_senses")

column_names.append("predicted_response_time")

(...)

def save_results(output_path):

 if os.path.exists(output_path): os.remove(output_path)

 out = open(output_path, 'a')

 out.write("word" + "\t" + "\t".join(column_names))

 for word in W:

 data = "\n" + word

 for variable in column_names:

 data += "\t" + str(W[word][variable])

 out.write(data)

 out.close()

Discussing the Example

What general lessons can we learn from this example? What general programming principles can we

distinguish? We have tried to synthesize some of the lessons and principles below:

1. Our program required us to transfer information from one structure to another (e.g., integer,

string, list, tuple). We used variables to refer to these structures.

2. Programming is about saving some of your time, notably by reusing code written by other

programmers. Hence our example was reusing features of the NLTK module (which was itself

reusing the WordNet dictionary), and other modules related to the operating system (os) and the

file system (fileinput).

3. There was a certain degree of organization in our program. Our examples isolated parts of the

code in functions. Organization helps program maintenance, particularly for longer programs.

The better your organization, the easiest the maintenance.

4. If you are novice at programming, the program might appear overwhelming to you. Although our

example was developed step by step, and its development has been made apparent to facilitate its

understanding, it will only make sense if you also examine it, step by step, actually try to

reproduce the program, and attempt to see the connection between the code and its output.

Understanding this connection will be greatly facilitated if you devote some of your time to

learning the underlying programming language.

The program developed in this example was only one example of a possible solution to this problem. For

the sake of achieving certain pedagogical goals, we chose quite a naive approach to a quite complex

problem. One could have imagined other solutions (different algorithms), possibly using other packages,

and with other languages. A good NLP project will be based on a clear understanding of the problem and

knowledge of what tools can be employed for what purposes. It is therefore important to invest in

understanding the theoretical aspects of programming and NLP, and their practical aspects (i.e., libraries,

and other resources). These topics are briefly discussed in Part III.

PART III. HOW TO CONDUCT AN NLP PROGRAMMING PROJECT

Part I informed the novice programmers and programmers unfamiliar with Python to basic programming

in Python. Part II illustrated how to solve a practical NLP problem with a Python program. Now you

might be motivated to undertake a project on your own. This section aims at delivering helpful hints to

start such an adventure.

So Which Language is Right for Me?

The choice of a programming language depends on the nature of the problem as well as on available

resources like the programmer's experience, the time devoted to solve the problem and the access to

software, documentation, corpora, etc. There are a multitude of programming languages to choose from.

Programming languages vary in terms of vocabulary, syntax, availability of libraries, ease of learning,

vitality of the supporting communities, etc. Choosing a language involves striking a delicate balance

between its advantages and disadvantages. For instance, computationally efficient (i.e., fast) languages

like C++ might be particularly appropriate to solve certain NLP problems which require speed, but they

might be more difficult to learn. Alternatively, you might not have much time to implement a solution so

you use an available library, but that library does not include the most efficient program for your problem.

Should you use the slower but ready-made existing program or write your own faster program from

scratch? In other words, a programmer faces a problem of limited computational and human resources

which must be allocated wisely.

The Right Tool for the Job at Hand

The programming languages option space might appear to be quite large. However, the option space is

somewhat restricted by the fact that some languages were designed for specific kinds of problems (e.g.,

Matlab for numerical computing; R for statistical analysis; PHP for web applications; SQL for interfacing

with databases, LaTeX as a document markup). In other words, one language might be more appropriate

for a particular problem than another language, thereby reducing the option space. Thus perhaps the best

and most useful analogy is to consider each language itself to be a kind of tool. A computing professional

will know a dozen languages or more, and like a master craftsman will select the right tool for the job at

hand.

In general, however, when considering a language to learn and use there are many issues to consider

(see Table 27). These questions, in one way or another, all tie back into the question of time and

efficiency. A language that is hard to learn and useful for only one project may not be the best choice,

especially for a first language. But a professional who already knows several languages might make a

different choice.

Table 27. Questions to ask oneself before choosing a language for a particular task.

- What kind of user community exists for this language (books/forums/friends)?

- What libraries exist for this language that I can use in my work?

- What kinds of development tools are available for this language?

- How well does this language address the problems I am working on now or in the future?

- How easy is it to learn the language and the various other resources I need?

When learning anything, it is important to think about the resources available. Typically, more popular

languages have better resources, but not always. Very specific languages might have virtually no user

base, no recent books, and essentially no future. A major issue to consider, especially for first time

language learners, is whether the language you are learning has useful libraries for the problems you are

working on. As a first time language learner, it will take some time before you can create sophisticated

libraries of your own. However, even a novice can use a library written by someone else (which you have

already started to do by using NLTK in Parts I and II). Fortunately, there exist a broad set of

tools/packages which can be used and re-used for a variety of NLP objectives. See the companion website

for a table with pointers to these resources.

Finally, a point that is often overlooked by even professional programmers is the development tools

available for a language. Many programmers start out using a text editor (e.g., notepad) and a compiler,

and many stay with those tools their whole careers. However, as anyone who has ever used a well

constructed IDE (integrated development environment) can tell you, an IDE with an integrated editor,

compiler, debugger, support for refactoring, and built-in documentation can save tremendous amounts of

time. The Python IDLE that you might have used while working out the examples of Parts I and II is just

an example. Have you noticed that it kindly used a special color coding scheme to highlight the structure

of your programs? A simple text editor would not do that. On the other hand, it should be noted that an

IDE by itself can have an initial learning curve.

A Word of Advice

If you are new at programming, you are likely to be new to NLP as well, and you will benefit from a

friendly language like Python. You can learn both programming and NLP techniques simultaneously

through NLTK, which was explicitly designed for educational purposes (Bird et al, 2008). But even if you

are not new to programming or to NLP, NLTK offers the advantage of an integrated set of routines,

lexicons, and corpora which allows you to easily prototype your ideas. If you are familiar with Java or

C++, you will likely prefer using toolboxes like LingPipe or GATE, amongst others (see the companion

website for the relevant links).

Of course, you might not need an entire NLP toolbox to carry the operations you wish to accomplish.

If, for instance, you are merely concerned with parsing a group of texts, you may want to use a tool

tailored for that goal, like the Stanford or Charniak parsers. In general, although at first glance it might

appear tempting to conduct a whole project within the same programming environment, you might

consider picking and choosing from a variety of languages and packages for different parts of your project

– hereby considering the set of available toolboxes as one giant toolbox. Actually, many NLP pipelines

operate on text and return text (which is why Part I contained a section about text input-output). Therefore

you can easily use different programming languages or tools.

For example, let’s say that you want to parse a text (as illustrated in Chapter XXX of this book). You

might first use a tagger. This would output a list of tagged words. Then you can run a parser over it using

these tagged words as input, and outputting a parse in a Penn Treebank style. You could then use that

parse and add semantic information to it (see Chapter XXX and Chapter XXX in this book), and use that

information to answer some questions about the text (e.g., Chapter XXX). This demonstrates the basic

idea of an NLP pipeline where each operation produces a new file of text, which the succeeding state

operates upon. At every step you could use a different tool or programming language. Overall, the nature

of your project will dictate much of the technology you have to use.

For complete beginners, it is important to first gain grasp of simple programming operations and learn

as many fundamentals of programming as possible. If you do not do that, you run the risk of wasting your

time reinventing the wheel, creating inefficient solutions to very well known problems, or making certain

mistakes which will vitiate your project at its core. Implementing the program is likely to be the most

difficult part for a beginner. Towards this end, readers are encouraged to consult some of the many

excellent tutorials and books on programming (e.g., Sande & Sande, 2009).

For more advanced users, we advise starting with the how-to tutorials that come with the various NLP

tools listed on the companion website. Both beginners and advanced users will gain from reusing small

pieces of code and incrementally building from there, similar to what we have done in Parts I and II.

CONCLUSION

Engaging in the practical task of programming NLP applications is not beyond the reach of novice

programmers with an eye for solving NLP problems. A multitude of resources have been developed by a

very vivid community of researchers, computer scientists, and coders. The reader should be now familiar

with basic notions of programming (in particular, data is acquired, transformed, and released), and the

notion that a variety of tools and languages exist in order to program NLP operations. Before beginning a

project it is important to choose wisely because the choice of a tool/language depends on a variety of

factors (nature of the task, power of the tool, learning curve, documentation, etc.). It is also important to

reflect on the problem before starting programming and to proceed incrementally. Overall, programming

can be useful and even fun. In some case, it can even produce a flow-like experience (Csikszentmihalyi,

1990) when the programmer is so absorbed in the task that time and fatigue disappear. We hope that this

will be your experience with programming.

ACKNOWLEDGMENTS

We want to thank Laurence Dumont, Katherine Guérard, Bernard Jeuniaux, Michaël Jeuniaux,

William Jeuniaux, and Bernard Lebel for commenting on various versions of this chapter. Their

help was crucial in improving the readability of the chapter. We also thank two reviewers, for

their extremely helpful comments and corrections. The first author is also grateful to the

Linguistic Society of America for providing funds to attend the 2007 Linguistic Institute, where

Steven Bird, Ewan Klein, and Edward Loper gave a fantastic course involving Python and

NLTK. This research was also supported by the National Science Foundation (REC 0106965,

ITR 0325428, HCC 0834847) and Institute of Education Sciences, U.S. Department of Education

(R305A080594). Any opinions, findings and conclusions, or recommendations expressed in this

paper are those of the authors and do not necessarily reflect the views of the NSF and DoE.

REFERENCES

Anderson, D. P. (2009). An Interview with Maurice Wilkes. Communications of the ACM, 52(9), 39-42.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O’Reilly Media.

Bird, S., Klein, E., Loper, E., & Baldridge, J. (2008). Multidisciplinary instruction with the Natural

Language Toolkit. In Proceedings of the Third Workshop on Issues in Teaching Computational

Linguistics, Columbus, Ohio.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper and Row.

Dyck, M. (2002). The GNU version of The Collaborative International Dictionary of English, presented

in the Extensible Markup Language. Retrieve May 20, 2010, from
http://www.ibiblio.org/webster/

Elkner, J., Downey, A. B., & Meyers, C. (2009). How to Think Like a Computer Scientist. Learning with

Python (2
nd

 Edition). Retrieved December 27, 2009, from
http://www.openbookproject.net/thinkCSpy

Graesser, A.C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix: Analysis of text on

cohesion and language. Behavior Research Methods, Instruments, & Computers, 36(2), 193-202.

Hodges, A. (2000). Alan Turing: The enigma. Walker & Company.

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. The MIT

Press.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM, 38 (11), 39-

41.

Parks, R., Ray, J., & Bland, S. (1998).Wordsmyth English dictionary – Thesaurus. [ONLINE]. Available:

http://www.wordsmyth.net/ [1999, February 1], University of Chicago.

Petzold, C. (2000). Code: The Hidden Language of Computer Hardware and Software. Microsoft Press.

Sande, W., & Sande, C. (2009). Hello World!: Computer Programming for Kids and Other Beginners.

Manning Publications.

Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of semantic ambiguity: semantic

competition in lexical access. Journal of Memory and Language, 46, 245-266.

Swade, D. (2002). The Difference Engine: Charles Babbage and the Quest to Build the First Computer.

Penguin.

ADDITIONAL READING SECTION

Blackburn, P. & Bos, J. (2005). Representation and Inference for Natural Language: A First Course in

Computational Semantics. CSLI Publications, Stanford, CA.

Feldman, R., & Sanger, J. (2006). The Text Mining Handbook: Advanced Approaches in Analyzing

Unstructured Data. Cambridge University Press.

Gries, S. T. (2009). Quantitative Corpus Linguistics with R: A Practical introduction. Routledge.

Guzdial, M. (2005). Introduction to Computing and Programming in Python: A Multimedia Approach.

Prentice Hall.

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing. An Introduction to Natural

Language Processing, Computational Linguistics, and Speech Recognition (2d Ed.).

Konchady, M. (2006). Text Mining Application Programming. Charles River Media.

LingPipe's Competition (2009). Retrieved December 27, 2009, from http://alias-
i.com/lingpipe/web/competition.html

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of

English: the Penn Treebank. Computational linguistics, 19(2), 313-330.

McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction. Microsoft Press.

Mertz, D. (2003). Text Processing in Python. Addison-Wesley, Boston.

Meyer, C. (2002). English Corpus Linguistics: An Introduction. Cambridge University Press.

Mitkov, R. (2005). The Oxford Handbook of Computational Linguistics. Oxford University Press, USA.

Nugues, P. M. (2006). An introduction to language processing with Perl and Prolog: An Outline of

Theories, Implementation, and Application with Special Consideration of English, French, and

German (Cognitive Technologies). Springer.

OpenNLP (2009). Retrieved December 27, 2009, from http://opennlp.sourceforge.net

KEY TERMS & DEFINITIONS

Artificial intelligence: study of how to design intelligent creatures

Computational linguistics: study of the computational properties of language

Computer science: study of how to make computers and programs

Linguistics: study of human languages

Natural language processing: using computers to automatically deal with human languages

Programming: giving instructions to computer to perform certain tasks

Corpus: organized set of documents

