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AutoTutor is a complex cognitive system that simulates a human tutor, or an ideal tutor, 

by holding a conversation with the learner in natural language.  AutoTutor qualifies as cognitive 

system in two fundamental ways (see Forsythe and Xavier, this volume).  First, its core 

architecture incorporates a human-like model of knowledge, discourse, and cognitive processes.   

Second, AutoTutor recruits these psychological mechanisms to engage the learner cognitively 

and thereby promote learning.  Therefore, AutoTutor both simulates cognitive mechanisms of 

human tutors and facilitates cognitive activities of human learners.     

AutoTutor was developed by Graesser and colleagues in the interdisciplinary Institute for 

Intelligent Systems at the University of Memphis (Graesser, Lu, Jackson, Hite-Mitchell, Ventura, 

Olney, & Louwerse, 2004; Graesser, Person, Harter, & TRG, 2001; Graesser, K. Wiemer-

Hastings, P. Wiemer-Hastings, Kreuz, & TRG; 1999; Graesser, VanLehn, Rose, Jordan, & 

Harter, 2001).  AutoTutor presents a series of challenging questions or problems that require 

approximately a paragraph (3-7 sentences) of information to answer correctly. An example 

question in conceptual physics is “When a car without headrests on the seats is struck from 

behind, the passengers often suffer neck injuries. Why do passengers get neck injuries in this 

situation?”   Although a perfect answer to this question is approximately 3-7 sentences in length, 

the initial answers by actual human learners are typically only 1 word to 2 sentences in length. 

This is where tutorial dialogue is particularly helpful, whether the dialogue is provided by 

AutoTutor or a human tutor. AutoTutor assists the learner in the evolution of an improved 

answer that draws out more of the learner’s knowledge that is relevant to the answer. The 

dialogue between AutoTutor and the learner typically lasts 50-200 turns (i.e., the learner expresses 

something, then the tutor, then the learner, and so on).  There is a mixed-initiative dialogue to the 

extent that each dialogue partner can ask questions and start new topics of discussion.  AutoTutor 
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serves as a discourse prosthesis that draws out more of what the learner knows and that 

adaptively improves answers to questions through collaboration in natural language.   

In this chapter, we hope to accomplish three goals.  First, we describe what AutoTutor 

does and clarify the scope of its functionality.  Second, we briefly review the evidence that 

AutoTutor both facilitates learning and simulates a reasonably good conversation partner.  Third, 

we describe the architecture of AutoTutor’s complex system.    

What does AutoTutor do? 

 Perhaps the best way to convey what AutoTutor is all about is through an example 

conversational dialogue.  The conversation below is a conversation with a student on the topic of 

conceptual physics.  This depicts the true output of AutoTutor, as opposed to serving as a 

hypothetical illustration of what an ideal AutoTutor might do. The conversation begins with a 

main question selected by AutoTutor from the repertoire of questions in its curriculum.       

AutoTutor-1: The sun exerts a gravitational force on the earth as the earth moves in its 

orbit around the sun. Does the earth pull equally on the sun? Explain why.  

Student-2: I don't know.   

AutoTutor-3: Could you at least try to give me an answer? That way, we'll have 

something as a starting place to work from.  How does Newton's third law of motion 

apply to this situation?   

Student-4: What?   

AutoTutor-5: Once again, how does Newton's third law of motion apply to this situation? 

Student-6: Does Newton's law apply to opposite forces?   

AutoTutor-7: Yes, right!  Hum. There's still something missing from your explanation.                                                                                     

Newton's Third Law refers to the forces exerted by one body on another ______?   
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Student-8:  body  

AutoTutor-9: You're amazing! Bravo!  Let's move on. What can you say about the 

magnitude of the force that the earth exerts on the sun?   

Student-10: What is the difference between a force and a vector?  

AutoTutor-11: Interesting question. Perhaps, the following answer helps.  Vector is an 

arrow drawn to scale used to represent a vector quantity.  Does this answer help you 

in understanding the material?  

Student-12: no.  

AutoTutor-13: I might not have understood what you meant. Ask another conceptual 

physics question if you need more information.  

Student-14: What is the difference between force and a vector?   

AutoTutor-15: Force is any influence that tends to accelerate an object, a push or pull, 

measured in Newtons. Force is a vector quantity and vector is an arrow whose length 

represents the magnitude of a quantity and whose direction represents the direction 

of the quantity. Okay, I bet you can get this! The sun experiences the same 

magnitude of gravitational pool from the earth, as the earth does from the _____?  

Student-16: sun  

AutoTutor-17: Yes, right! From the sun. What is going on in this situation between the 

earth and sun?  

Student-18: The sun is pulling on the earth because it is bigger.   

AutoTutor-19:  Let's try this together. When two objects of different masses hit each 

other, which one exerts the greater force on the other, the heavy object, the light 

object, or are the forces equal?    
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Student-20:  the heavy object.  

AutoTutor-21: No. The forces are equal in magnitude. Um, well, for every force there is a 

reaction force, such that the two forces constitute an action reaction force pair. The 

two forces have opposite direction and equal magnitude. No matter how different the 

masses of the two objects are, they will exert reaction forces on each other in the 

same magnitude.   

 This example shows that AutoTutor can generate a reasonably smooth conversation.  

AutoTutor’s answers are adaptive to what the student previously said and appear to be 

interpreting the student’s speech acts.  Obviously the dialogue is not perfect.  One glitch of 

AutoTutor, for example, appears to be in turn 7.  It is not clear whether AutoTutor is answering 

the student’s question that was asked in turn 6, or is incorrectly interpreting turn 6 as an assertion 

made by the student.  However, for the most part, the conversation is reasonably smooth.  It 

should be noted that the 21 turns in this example exchange does not completely answer the main 

question posed by AutoTutor in turn 1.  We have conducted experiments on over 1000 students 

using AutoTutor, or roughly 2-3 thousand hours of logged time of conversational dialogue.  

Some students require several hundreds of turns to answer a single main question posted by 

AutoTutor.    

 AutoTutor needs to accomplish a number of tasks in order to orchestrate a smooth and 

adaptive conversation.  AutoTutor needs to classify and interpret the language expressed by the 

student.  Students type in their input at present, but we do have a prototype version that 

incorporates speech recognition.  AutoTutor needs to formulate one or more dialogue moves 

within each conversational turn in a fashion that is responsive to the student.  Table 1 presents an 

analysis of the example dialogue by specifying the categorized dialogue moves of AutoTutor, the 
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classified speech acts of the student, and comments to help the reader interpret what is going on.  

The content expressed by either AutoTutor or the student in Table 1 are signified in italics.  

Discourse categories of AutoTutor’s dialogue moves have been added in capitals, whereas other 

information is added in normal font.     

------------------------------------------------------ 
Insert Table 1 about here 

------------------------------------------------------ 

 The example and analysis in Table 1 illustrate the mixed-initiative dialogue of 

AutoTutor.  AutoTutor segments the student’s turns into speech act units and then assigns these 

units into categories, such as Assertion, Short Answer, Metacognition, Metacommunication, 

Verification Question, and Comparison Question.  There are approximately 20 categories of 

student speech acts; 16 of these are different categories of student questions.  AutoTutor attempts 

to accommodate virtually any student question, assertion, comment, or extraneous speech act.  

This requires interpreting the student’s speech acts by implementing modules developed in the 

field of computational linguistics (Allen, 1995; Covington, this volume; Jurafsky & Martin, 

2000).   AutoTutor needs to produce language in addition to comprehending language.  Each turn 

of AutoTutor requires the generation of one or more dialogue moves that either adaptively 

respond to what the student just expressed or that advance the conversation in a constructive 

fashion that answers the main question.  The dialogue moves within a turn are connected by 

dialogue markers, as illustrated in Table 1.  Some dialogue moves are very responsive to the 

student’s preceding turn, such as the short feedback (positive, neutral, versus negative), the 

answers to student questions, and corrections of student misconceptions.   Other dialogue moves 

push the dialogue forward in an attempt to cover the expected answer to the questions.  These 

forward-directed dialogue moves include Pumps (e.g., Tell me more, What else?), Hints, Prompts 
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for specific words or phrases, and Assertions.  The responsive and forward-directed dialogue 

moves together provide a mixed-initiative dialogue in which both parties of the conversation 

exert an influence over the conversation.  These are not scripted conversations, but rather are 

dynamically emerging exchanges.    

 AutoTutor delivers its dialogue moves with an animated conversational agent that has a 

text-to-speech engine, facial expressions, gestures, and pointing.  Animated agents have been 

become increasingly popular in learning environments on the web, Internet, and desktop 

applications (Cassell & Thorisson, 1999; Massaro & Cohen, 1995; Johnson, Rickel, & Lester, 

2000).  Figure 1 shows the interface of one version of AutoTutor on the subject matter of 

Newtonian physics.  The main question is presented in the top-right window.  This major 

question (e.g., involving a boy dropping keys in a falling elevator) remains at the top of the web 

page until it is finished being answered during a multi-turn dialogue.  The students use the 

bottom-right window to type in their contributions for each turn.  The dialogue history between 

AutoTutor and student is shown in the bottom-left window.  The animated conversational agent 

resides in the upper-left area.  The agent uses a text-to-speech engine from either AT&T, 

SpeechWorks, or a Microsoft Agent (dependent on licensing agreements) to speak the content of 

AutoTutor’s turns. Figure 2 shows a somewhat different interface that is used when tutoring 

computer literacy.  This interface has a display area for diagrams, but no dialogue history 

window.   

---------------------------------------------------------- 
Insert Figures 1, 2, and 3 about here 

---------------------------------------------------------- 
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AutoTutor with interactive 3D simulation 

One version of AutoTutor has an embedded interactive 3D simulation. 3D simulation 

provides an additional channel of communication to discuss conceptual physics with the learner.  

Each simulation is crafted to cover particular physics principles in an ideal answer or to help 

correct particular misconceptions about physics.  For each of the physics problems, we 

developed an interactive simulation world in 3-d Studio Max.  This included the people, objects, 

and spatial setting associated with the problem.  The student can manipulate parameters of the 

situation (e.g., mass of objects, speed of objects, distance between objects) and then ask the 

system to simulate what will happen.  They can compare their expected simulated outcome with 

the actual outcome after the simulation is completed.  Moreover, they describe what they see.  

Their actions and descriptions are evaluated with respect to covering the expected principles in 

an ideal answer.  In order to manage the interactive simulation, AutoTutor gives hints and 

suggestions, once again scaffolding the learning process with dialogue. Thus, AutoTutor 

combines interactive simulation with mixed-initiative dialog.   

Figure 3 shows an example interface for the 3D version of AutoTutor.  The question is 

presented at the top of the screen, in this case “When a car without headsets on the seats is struck 

from behind, the passengers often suffer neck injuries.  Why do passengers get neck injuries in 

this situation?”  Beneath the question are two windows that show the car and truck (middle 

window) and the driver in the car (right window).  These components move whenever a 

simulation is run.  Beneath the question on the left is the animated agent that guides the 

interaction with hints, suggestions, assertions, and other dialogue moves.  These suggestions 

include having the student manipulate parameters, such as truck speed, mass of the car, and mass 

of the truck.  The students also have a number of the binary options: Having the head rests in the 
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car on, showing the skin on the driver, slowing down the simulation, and vector arrows that 

depict forces.  The student manipulates these parameters and options, as shown in the bottom 

left, before a simulation is run.  The activity of manipulating these inputs and viewing the 

simulation is believed to provide a referentially grounded and embodied representation of the 

problem, as well as a deeper understanding of physics (Bransford, Brown, & Cocking, 2000). 

However, empirical support for the pedagogical value of interactive simulation has not yet been 

substantiated in the literature on cognition and instruction.  The students can run as many 

simulations as they wish until they feel they understand the relationship between parameters and 

outcomes of simulations.  However, interacting with and viewing the simulations is not all there 

is.  The participants are also prompted to describe what they see and answer the main question.  

Therefore, deep learning of physics is believed to emerge from the combination of interactivity, 

perceptual simulation, feedback on the simulation, and explaining what happens.     

Some previous systems have conversational agents that combined dialogue with 

interactive simulation.  Some examples of these systems are Steve (Rickel & Johnson, 1999) and 

Mission Rehearsal (Gratch, Rickel, Andre, Cassell, Petajan, & Badler, 2002).  However, 

AutoTutor is the only system that is available on the Internet, that has systematically been tested 

on students, and that has flexible tutorial dialogue that scaffolds interactive simulation.    

Pedagogical foundations of AutoTutor 

 The design of AutoTutor was inspired by three bodies of theoretical, empirical, and 

applied research.  First, there are explanation-based constructivist theories of learning (Aleven & 

Koedinger, 2002; Chi, deLeeuw, Chiu, LaVancher, 1994; VanLehn, Jones, & Chi, 1992).  

According to the explanation-based constructivist theories of learning, learning is more effective 

and deeper when the learner must actively generate explanations, justifications, and functional 
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procedures than when merely given information to read (Bransford et al., 2000).  Second, there 

are intelligent tutoring systems that adaptively respond to student knowledge (Anderson, Corbett, 

Koedinger, & Pelletier, 1995; VanLehn, Lynch, et al., 2002).  These tutors give immediate 

feedback to learner’s actions and guide the learner on what to do next in a fashion that is 

sensitive to what the system believes the learner knows.  Third, empirical research has 

documented the collaborative constructive activities that routinely occur during human tutoring 

(Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001; Fox, 1993; Graesser, Person, & Magliano, 

1995; Moore, 1995). The patterns of discourse uncovered in naturalistic tutoring are imported 

into the dialogue management facilities of AutoTutor. 

  One of AutoTutor’s prominent dialogue patterns is called expectation and misconception 

tailored dialogue (EMT dialogue), which is known to be common in human tutoring.  Both 

AutoTutor and human tutors typically have a list of anticipated good answers (called expectations) 

and a list of misconceptions associated with each main question or problem.  One goal of the tutor 

is to coach the student in covering the list of expectations.  Another goal is to correct 

misconceptions that are manifested in the student’s talk and actions.  Yet another goal is to give 

feedback and adaptively respond to the student.  The expectations and misconceptions associated 

with a main question are stored in AutoTutor’s curriculum script.  AutoTutor provides feedback to 

the learner (positive, neutral, and negative feedback), pumps the learner for more information 

(“What else”), prompts the learner to fill in missing words, gives hints, fills in missing 

information with assertions, identifies and corrects bad answers, answers learners’ questions, 

and summarizes answers. As the learner expresses information over many turns, the information in 

the 3-7 sentences of an expected answer is eventually covered and the question is answered. 

During the process of supplying the ideal answer, the learner periodically articulates 
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misconceptions and false assertions. If these misconceptions have been anticipated in advance and 

incorporated into the program, AutoTutor provides the learner with information to correct the 

misconceptions. Therefore, as the learner expresses information over the turns, this information is 

compared to expectations and misconceptions, and AutoTutor formulates its dialogue moves in a 

fashion that is sensitive to the learner input.   

 AutoTutor does its best to handle questions posed by the learner. However, somewhat 

surprisingly, available research has revealed that students rarely ask questions in classrooms, 

human tutoring sessions, and AutoTutor sessions (Graesser & Person, 1994; Graesser & Olde, 

2003). The rate of learner questions is 1 question per 6-7 hours in a classroom environment and 1 

per 2 minutes in tutoring. This is disappointing news from the standpoint of a pedagogical theory 

that emphasizes curiosity and active inquiry.  However, there is a silver lining.   This 

characteristic of human-tutor interaction makes it easier to build a dialogue-based intelligent 

tutoring system such as AutoTutor. It is not computationally feasible to interpret any arbitrary 

input of the student from scratch and to construct a mental space that adequately captures what 

the learner has in mind. Instead, the best that AutoTutor can do is to perform conceptual pattern 

matching operations that compare student input with expectations. Fortunately, therefore, the 

prevailing tutorial activities between humans is compatible with what currently can be handled 

computationally within AutoTutor.   

AutoTutor uses Latent Semantic Analysis (LSA) as its primary conceptual pattern 

matching algorithm when evaluating whether student input matches the expectations and 

misconceptions. LSA is a high-dimensional statistical technique that measures the conceptual 

similarity of any two pieces of text (Foltz, Gilliam, & Kendall, 2000; Kintsch, 1998; Landauer & 

Dumais, 1997; Laham, this volume; Landauer, Foltz, & Laham, 1998). The size may vary from 
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being a single word to a sentence, paragraph, or lengthier document.   A cosine is calculated 

between the LSA vector associated with expectation E (or misconception M) and the vector 

associated with learner input I. Expectation E (or misconception M) is scored as covered if the 

match between E or M and the learner’s text input I meets some threshold, which has varied 

between .40 and .85 in previous instantiations of AutoTutor (Graesser, P. Wiemer-Hastings, K. 

Wiemer-Hastings, Harter, Person, & TRG, 2000; Olde, Franceschetti, Karnavat, Graesser, & 

TRG, 2002).  As the threshold parameter increases, the learner needs to be more precise in 

articulating information and thereby cover the expectations.   

  Suppose that there are five key expectations in an ideal answer that the tutor wants to 

cover in an answer to a question.  AutoTutor will direct the dialogue in a fashion that finesses the 

students to articulate each of these expectations.  AutoTutor directs the dialogue through 

prompts, hints, and embedded 3D simulations that are targeted for particular expectations. 

AutoTutor stays on topic by completing the sub-dialogue that covers expectation E before 

starting a sub-dialogue on another expectation. For example, suppose an answer requires the 

expectation: the force of impact will cause the car to experience a large forward acceleration.  

The following family of prompts is available to encourage the student to articulate particular 

content words in the expectation: 

1. The impact will cause the car to experience a forward _____?  

2. The impact will cause the car to experience a large acceleration in what direction?  

_____. 

3. The impact will cause the car to experience a forward acceleration with a magnitude that 

is very  _____? 

4. The car will experience a large forward acceleration after the force of ______? 
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5. The car will experience a large forward acceleration from the impact’s ______? 

6. What experiences a large forward acceleration?   

The particular prompts that are selected are those that fill in missing information if answered 

successfully.  That is, the dialogue management component adaptively selects hints, prompts, 

and targeted 3D simulations in an attempt to achieve pattern completion.  The expectation is 

covered when enough of the ideas underlying the content words in the expectation are articulated 

by the student so that the LSA threshold is met or exceeded.   

 Once again, we believe that these dialogue mechanisms of AutoTutor are both 

computationally manageable and are very similar to what human tutors do.  Human tutors cannot 

deeply comprehend all of the contributions of students, most of which are imprecise, vague, 

fragmentary, incomplete, and ungrammatical (Graesser et al., 1995).  The best that most human 

tutors can do is to compare student input to anticipated good answers and misconceptions.  The 

repertoire of anticipated content grows incrementally with tutoring experience. Comparisons 

between student input and anticipated content is approximate and scruffy rather than precise and 

tidy.  LSA provides a suitable algorithm for such comparison operations.  Moreover, the 

Expectation and Misconception Tailored (EMT) dialog moves of AutoTutor and most human 

tutors are not particularly sophisticated from the standpoint of ideal tutoring strategies that have 

been proposed in the fields of education and artificial intelligence (Graesser et al., 1995).  

Graesser and colleagues videotaped over 100 hours of naturalistic tutoring, transcribed the data, 

classified the speech act utterances into discourse categories, and analyzed the rate of particular 

discourse patterns.  These analyses revealed that human tutors rarely implement intelligent 

pedagogical techniques such as bona fide Socratic tutoring strategies, modeling-scaffolding-

fading, reciprocal teaching, frontier learning, building on prerequisites, or diagnosis/remediation 
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of deep misconceptions (Collins, Brown, & Newman, 1989; Palincsar & Brown, 1984; Sleeman 

& Brown, 1982).  These sophisticated techniques are summarized in Table 2.  Instead of 

implementing these and many other sophisticated tutoring strategies, tutors tend to coach 

students in constructing explanations according to the EMT dialog patterns (strategy 1 in Table 

2). The EMT dialog strategy is substantially easier to implement computationally than are the 

sophisticated tutoring strategies.  On this dimension, the computational and psychological 

solutions are perfectly compatible.   

---------------------------------------------------------- 
Insert Table 2 about here 

---------------------------------------------------------- 

Adapting to learner emotions 

We are in the process of developing a version of AutoTutor that perceives and responds 

to learner emotions in addition to the learner’s knowledge states.  AutoTutor is augmented with 

sensing devices and signal processing algorithms that classify affective states of learners.  

Emotions are classified on the basis of dialog patterns during tutoring, the content covered, facial 

expressions, body posture, mouse haptic pressure, and keyboard pressure.  This recent project 

has two specific objectives.  First, AutoTutor will analyze patterns of facial, body, and dialog 

activity that arise while interacting with AutoTutor and will classify this input into basic affect 

states (such as confusion, frustration, boredom, interest, excitement, and insight).  Second, we 

will investigate whether learning gains and learner’s impressions of AutoTutor are influenced by 

dialog moves of AutoTutor that are sensitive to the learner’s emotions.  For example, if the 

student is extremely frustrated, then AutoTutor presumably should give a good hint or prompt 

that directs the student in a more positive learning trajectory.  If the student is bored, AutoTutor 

should give more engaging, challenging, and motivating problems.  If the student is very 
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absorbed and happy, then AutoTutor should be minimally invasive and stay out of the student’s 

way.    

 There is already some evidence that emotions might be intimately interwoven with 

complex learning.  We recently conducted an experiment in which we observed six different 

affect states (frustration, boredom, flow, confusion, eureka, and neutral) that potentially occur 

during the process of learning introductory computer literacy with AutoTutor (Craig, Graesser, 

Sullins, & Gholson, in press).  The participants were 34 low-domain knowledge college students.  

Expert judges recorded emotions that learners apparently were experiencing at random points 

during the interaction with AutoTutor.  Observational analyses revealed significant relationships 

between learning gains (posttest-pretest scores on multiple choice tests) and the affective states 

of boredom (r = -.39), flow (r = .29), and confusion (r = .33). Correlations with eureka (r = .03), 

and frustration (r = -.06) were near zero.   

These results fit some available theoretical frameworks that interrelate emotions and 

cognition.  The positive correlation between confusion and learning is somewhat provocative, 

but is actually consistent with a model that assumes that cognitive disequilibrium is one 

precursor to deep learning (Graesser & Olde, 2003; Otero & Graesser, 2001).  Cognitive 

disequilibrium occurs when the learner experiences contradictions, discrepancies, novel input, 

obstacles to goals, decision deadlocks, and major knowledge gaps.  Both cognitive activities and 

emotions are experienced until equilibrium is restored.  The findings that learning correlates 

negatively with boredom and positively with flow are consistent with predictions from 

Csikszentmihalyi’s (1990) analysis of flow experiences. Conscious flow occurs when the student 

is so absorbed in the material that time disappears, fatigue disappears, and extraneous 
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interruptions get unnoticed.  Experiences of eureka were much too rare in the experiment; there 

was only one recorded eureka experience in 17 total hours tutoring among the 34 students.   

 At this point in the project, we have assembled and installed most of the emotion sensing 

technologies with AutoTutor.  We have analyzed the components, features, and representations 

of each of the sensing technologies (i.e., dialogue patterns during tutoring, content covered, 

facial expressions, body posture, mouse haptic pressure, and keyboard pressure).  Software is 

currently being developed to interpret the input.  These channels include (1) the AutoTutor log 

file with speech acts of student and tutor turns, as well as knowledge states achieved from the 

tutorial dialog, (2) the body posture pressure measurement system purchased from Tekscan, (3) 

the upper facial sensor device developed by Roz Picard’s Affective Computing Lab at MIT 

(Picard, 1997; Kapoor & Picard, 2002), (4) a haptic pressure sensor for the mouse (supplied by 

MIT), and (5) a keyboard pressure sensor purchased from Tekscan.  Affect states will be 

interpreted and/or classified on the basis of these five input channels of information. 

Computational models are being explored to perform these emotion analyses.  These models 

have quantitative foundations in Bayesian, hidden Markov, neural network, and/or dynamical 

systems, but are substantially more complex than the standard architectures.      

Empirical Evaluations of AutoTutor 

AutoTutor should be declared a success to the extent that it meets various performance 

criteria.   Four criteria have been considered in our previous evaluations of AutoTutor. One type 

is technical, and will not be addressed in this chapter.  In essence, do particular computational 

modules of AutoTutor produce output that is valid and meets the intended technical 

specifications?   We are satisfied, for example, that our LSA component performs conceptual 

pattern matching operations almost as well has human judges (Graesser, Hu, & McNamara, 
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2005; Graesser et al., 2000; Olde et al., 2002) and that our speech act and question classifier has 

a high degree of accuracy (Olney et al., 2003).  A second type of evaluation assesses the quality 

of the dialogue moves produced by AutoTutor.  That is, to what extent are AutoTutor’s dialogue 

moves coherent, relevant, and smooth?  A third criterion is whether AutoTutor produces learning 

gains.  A fourth criterion is whether learners like interacting with AutoTutor.  This section 

briefly presents what we know so far about the second and third types of evaluation.   

Expert judges have evaluated AutoTutor with respect to conversational smoothness and 

the pedagogical quality of its dialogue moves (Person, Graesser, Kreuz, Pomeroy, & TRG, 

2001). The experts’ mean ratings lean to the positive end of the rating scales on conversational 

smoothness and pedagogical quality, but there is room to improve in the naturalness and 

pedagogical effectiveness of its dialogue.  One intriguing evaluation has been a bystander Turing 

test on the naturalness of AutoTutor’s dialogue moves (Person, Graesser, & TRG, 2002).  In 

these studies, there was a random selection of tutor moves in the tutorial dialogs between 

students and AutoTutor.  Six human tutors (from the tutor pool on computer literacy at the 

University of Memphis) were asked to fill in what they would say at these random points.  At 

each of these random tutor turns, the corpus contained what the human tutors generated and what 

AutoTutor generated. A group of computer literacy students was asked to discriminate between 

dialogue moves generated by a human versus a computer; half in fact were by human and half 

were by computer.  The results surprisingly revealed that the bystander students were unable to 

discriminate whether particular dialogue moves had been generated by a computer versus a 

human.  The d’ discrimination scores were near zero.   

The above results of the bystander Turing test support the claim that AutoTutor is a good 

simulation of human tutors.  AutoTutor manages to have productive and reasonably smooth 
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conversations even though it does not completely understand what the student expresses. There 

is an alternative interpretation, however, which is just as interesting.  Perhaps tutorial dialogue is 

not highly constrained, so the tutor has a high degree of latitude on what can be said without 

disrupting the conversation.  In essence, there might be a large landscape of options on what the 

tutor can say at most points in the dialogue.  The conversations are flexible and resilient, not 

fragile. 

Evaluations of tutoring systems on learning gains is perhaps the most important 

performance criterion.  It is well established that one-to-one human tutoring is a powerful 

method of promoting learning (Cohen, Kulik, & Kulik, 1982; Corbett, 2001), even though the 

vast majority of the human tutors have moderate domain knowledge and little or no training in 

pedagogy or tutoring.  These unaccomplished human tutors enhanced learning with an effect size 

of .4 standard deviation units (called sigma’s), which translates to approximately an 

improvement of half a letter grade.  According to Bloom (1984), accomplished human tutors can 

produce effect sizes as high as 2-sigma in basic mathematics.  However, the magnitude of this 

effect is suspect because only two studies have investigated the impact of accomplished tutors on 

learning gains.  In the arena of computer tutors, intelligent tutoring systems with sophisticated 

pedagogical tactics, but no natural language dialog, produce effect sizes of approximately 1-

sigma in the topics of algebra, geometry, and quantitative physics (Corbett, 2001; Van Lehn et 

al., 2002). Learning gains from tutors have been most pronounced on subject matters that are 

quantitative, with precise, clearcut answers.    

AutoTutor has been evaluated on learning gains in several experiments on the topics of 

computer literacy (Graesser, Lu et al., 2004; Graesser, Moreno, Marineau, Adcock, Olney, 

Person, & TRG,. 2003; Person, Graesser, Bautista, Mathews, & Tutoring Research Group, 2001) 
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and conceptual physics (Graesser, Jackson et al. 2003; VanLehn, Graesser, Jackson, Jordan, 

Olney, & Rose, 2004).  The results of 9 experiments have been quite positive.   Previous versions 

of AutoTutor have produced gains of .2 to 1.5 sigma (a mean of .8), depending on the learning 

performance measure, the comparison condition (either pretest scores or a control condition in 

which the learner reads the textbook for an equivalent amount of time as the tutoring session), 

the subject matter, and the version of AutoTutor. Approximately a dozen measures of learning 

have been collected in these assessments on the topics of computer literacy and physics, 

including:  (1) multiple choice questions on shallow knowledge that tap definitions, facts and 

properties of concepts, (2) multiple choice questions on deep knowledge that taps causal 

reasoning, justifications of claims, and functional underpinnings of procedures, (3) essay quality 

when students attempt to answer challenging problems, (4) a cloze task that has subjects fill in 

missing words of texts that articulate explanatory reasoning on  the subject matter, and (5) 

performance on problems that require problem solving. These results place previous versions of 

AutoTutor somewhere between an unaccomplished human tutor and an intelligent tutoring 

system.  Moreover, one recent evaluation of physics tutoring remarkably reported that the 

learning gains produced by accomplished human tutors in computer mediated communication 

were equivalent to the gains produced by AutoTutor (Van Lehn et al., 2004).  It is informative to 

note that the largest learning gains from AutoTutor have been on deep reasoning measures rather 

than measures of shallow knowledge.   AutoTutor’s problems and dialogue facilities were 

designed to target deep reasoning so this result was quite expected.    

One persistent question is what it is about AutoTutor that facilitates learning.   For 

example, is it the dialogue content or the animated agent that explains the learning gains?  What 

roles do motivation and emotions play, over and above the cognitive components?  We suspect 
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that the animated conversational agent will fascinate some students, and possibly be more 

motivating.  Learning environments have only recently had animated conversational agents with 

facial features synchronized with speech and in some cases appropriate gestures (Cassell & 

Thorisson, 1999, Johnson, Rickel, & Lester, 2000).  Many students will be fascinated with an 

agent that controls the eyes, eyebrows, mouth, lips, teeth, tongue, cheekbones, and other parts of 

the face in a fashion that is meshed appropriately with the language and emotions of the speaker 

(Picard, 1997).  The agents provide an anthropomorphic human-computer interface that 

simulates having a conversation with a human.  This will be exciting to some, frightening to a 

few, annoying to others, and so on.  There is some evidence that these agents tend to have a 

positive impact on learning or on the learner’s perceptions of the learning experience, compared 

with speech alone or text controls (Atkinson, 2002; Moreno, Mayer, Spires, & Lester, 2001).  

However, additional research is needed to determine the precise conditions, agent features, and 

levels of representation that are associated with learning gains.  According to Graesser, Moreno 

et al. (2003), it is the dialogue content, not the speech or animated facial display, that influences 

learning, whereas the animated agent can have an influential role on motivation (positive, 

neutral, or negative).  As expressed in Graesser, Moreno et al. (2002), “the medium is not the 

message – the message is the message.”  Learning apparently is facilitated by a tutor that 

communicates the right content at the right time to the right student, whereas motivation is 

influenced by the aesthetics of the animated agent.  One rather provocative result is that there is a 

near zero correlation between learning gains and how much the students like the conversational 

agents (Moreno, Klettke, Nibbaragandla, Graesser, & TRG, 2002).  Therefore, it is important to 

distinguish liking from learning in this area of research. Although the jury is still be out on what 

it is exactly about AutoTutor that leads to learning gains, the fact is that students learn from the 
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intelligent tutoring system and some enjoy having conversations with AutoTutor in natural 

language. 

Architecture of AutoTutor 

 In the introductory chapter to this volume, Forsythe and Xavier argue that a cognitive 

system uses “plausible computational models of human cognitive processes as a basis for human 

machine interactions” (page 3).  This is a distinctive conception of what an intelligent system 

interacting with a human should be, a stance for which we have considerable sympathy.   

Forsythe and Xavier propose two requirements for such a system: The system should posses an 

accurate model of both the user’s knowledge and the user’s cognitive processes.  AutoTutor’s 

user modeling does in fact attempt to recover some of the knowledge and cognitive processes of 

the student learner.  But it does so only statistically and coarsely, not symbolically and precisely. 

For example, LSA provides a statistical approximation of what the student knows about each 

expectation, as well as the student’s overall knowledge about the subject matter.  AutoTutor’s 

conversation logs also keep track of how verbose the student is (measured as words per student 

turn) and how much the student takes the initiative (measured as the number of student 

questions).  However, that is the limit on what AutoTutor knows about the student.  This learner 

modeling of AutoTutor is intentionally minimal because of the vagueness and indeterminacy of 

student contributions and because we know there are limits to how much human tutors know 

about the students’ knowledge states (Graesser et al., 1995).  

 The computational model underlying AutoTutor is much more refined from the 

standpoint of its attempts to model what human tutors do.  We indeed designed AutoTutor to 

incorporate the cognitive representations and processes of actual human tutors.  For example, the 
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Expectation and Misconception Tailored (EMT) dialogues are distinctly modeled to match the 

dialogue patterns and pedagogical strategies of human tutors.   

 This section describes the overall computational architecture of AutoTutor. Given that 

many versions of AutoTutor have been developed and described (Graesser et al., 1999, 2001), 

we describe our most recent version that accommodates interactive 3D simulation.  This version 

is called AutoTutor-3D, even though there is the option of removing the interactive 3D 

simulation module.   We subsequently focus on one module that is particularly at the heart of 

AutoTutor, namely dialogue management.     

Overall architecture of AutoTutor-3D 
 

AutoTutor 3D is a client-server application on the Internet that uses a thin client protocol 

with the asynchronous transmission of small data packets (< 20K).  In a dialogue turn, a packet is 

sent from the client (i.e., the computer or workstation that one learner interacts with) to the 

server (the central computer that handles many learners) and back again.  These packets contain 

the global state of the tutoring session; all of the usable history and information of the tutoring 

session is stored in a packet. As a consequence, the server can “forget” about a client after a 

packet has been processed.   

 There are two major reasons for this asynchronous architecture.  The first reason appeals 

to computational efficiency.  In an asynchronous model, the server maintains no connection 

information or memory resources for a particular client.  Consequently, memory resource 

demands do not increase with the number of clients.  This process closely resembles the 

operating system’s notion of a context switch, whereby a server gives each client the impression 

that he/she is the only user, while simultaneously serving thousands of clients in the background.  

The second reason appeals to ease of testing.  Our asynchronous system can be tested more 
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easily because all of the current state information is explicit in a packet.  This greatly facilitates 

unit testing, debugging, and interoperability. It should be noted that these two reasons for the 

packet-based asynchronous architecture are entirely computational and practical, as opposed to 

being motivated by theoretical cognitive mechanisms.  It is doubtful that this design decision 

makes any sense at all from the standpoint of psychological plausibility.   

 The packet is represented as a binary serialized class known as the state object.  This 

class implements an interface for every component of the server.  These interfaces have a dual 

purpose: to declare what data a component needs from other components and to create storage 

for a component’s state for the next turn.  Therefore, all of the dependencies between modules 

are explicit in the state object.  The state object further simplifies the system by being the input 

and output of every component.  Therefore, to have a basic grasp of the system, one only needs 

to understand the dependencies and data in the state object.  A packet is essentially a local data 

structure that permits the server to reconstruct the global history of all modules in the system for 

that one client.   

 The components of the system are divided into modules, utilities, and the hub.  The 

AutoTutor-3D server is a distributed hub and spokes application that may reside on multiple 

servers or on a single server.  In the standard hub and spokes configuration, only the hub knows 

about the existence of the modules.  Therefore, any component that provides the data specified 

by the state object may be interchangeably used.  As stated previously, the hub receives a state 

object from the client and then passes the state object to various modules in a scripted order.  The 

basic architecture concept and hub are similar to the DARPA Communicator (Xu & Rudnicky, 

2000).  However, in AutoTutor-3D, modules are defined by the fact that they input and output 

state objects, which greatly simplifies communication and interoperability between modules.  
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Modules may call various utilities, such as LSA facilities or databases that have their own 

distinctive interface.  The AutoTutor-3D architecture is much like a production line in that 

modules each do a small bit of the work and subsequent modules are dependent on preceding 

ones.  Just as in a production line, the modules are only interested in the work in front of them 

and forget about previous work.  The AutoTutor-3D architecture is somewhat like a blackboard 

model (Anderson, 1983; Laird, Newell, & Rosenbloom, 1987) in which items are written on a 

blackboard and modules are only interested in particular items.  However, in the present model, 

the blackboard gets passed from one module to the next, and when the modules are finished with 

the blackboard they forget about it.   

 There are theoretical reasons for adopting a modular architecture with packets containing 

state objects.  The architecture emulates a modular cognitive architecture that is also contextually 

rich.  Fodor (1983) and many others in the cognitive sciences believe that the human mind can be 

segregated into a set of semi-autonomous modules that perform special-purpose functions, such 

as visual perception, syntactic language parsing, retrieval from episodic memory, executive 

decisions, and so forth.  At the same time, however, the input and constraints operating on each 

module M should be sufficiently rich and informative about other modules that module M can 

perform its computations intelligently.  Modules that can peak at a limited snapshot of outputs 

from other modules are inherently limited.   

 In order to gain a more concrete understanding of our architecture, consider Figure 4.  

The Client computer sends a state object to the Hub after the student has entered an utterance.  

The state object is first passed to the Language Analyzer which segments the utterance into main 

clauses, parses the clauses, and assigns a speech act to each main clause (Olney et al, 2003).  The 

Language Analyzer uses the Conexor EngLite parser (Tapanainen & Järvinen, 1997) as a utility. 
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The modified state object is sent to the Hub, which then sends it to the Assessor.  The Assessor 

updates the student model and produces a set of predictions about the likely effects of alternative 

dialogue moves on the student model.  The Assessor uses LSA and the Curriculum Script 

database (i.e., the major content repository of main questions and dialogue moves) to update the 

student model and make predictions.  Next the Assessor passes the updated state object to the 

Hub, which forwards it to the Dialogue Manager.  The Dialogue Manager consults the output of 

the previous modules as well as the dialogue information state of the previous turn (not shown).  

The Dialogue Manager subsequently updates the dialogue information state of the state object 

and provides it with dialogue for the tutor’s turn.  The updated state object is passed to the Hub, 

which forwards it back to the client.  It should be noted that the state object presented in Figure 4 

is highly simplified, but the process of computation is accurately specified.  

---------------------------------------------------------- 
Insert Figure 4 about here 

---------------------------------------------------------- 
 

 It is worthwhile to point out a few technical points for those who are interested in 

implementing similar systems.  AutoTutor 3D is written in C# and Visual Basic .NET, both 

languages that run atop the managed .NET Framework and Common Language Runtime (CLR). 

The CLR offers language level compatibility (Microsoft .NET Technology Overview 2004).  In 

other words, any component of AutoTutor can easily communicate with any other component, as 

long as the component is written in a CLR compatible language. Over 30 programming 

languages have CLR compatible compilers (Richie, 2004), so almost any programmer can use 

the language of their choice to add functionality to the system. The .NET Framework offers a 

variety of libraries, including the Remoting system that allows objects to be quickly and 

transparently accessed over the network and that forms the basis of the scalable infrastructure. 
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Both the Framework and the CLR virtual machine run on Windows, Linux, Mac OS X, and other 

operating systems by using open source runtimes such as Mono and Portable.NET. 

 The AutoTutor-3D server has a variety of protocol translators that convert the data stream 

from clients into state tables that the modules can understand. These “multi-protocol personal 

translators” are affectionately known as muppets.  To make AutoTutor 3D compatible with a 

new piece of client software, regardless of the language it is written in or the way it transmits 

data, a programmer simply needs to write a new muppet to parse the data from the client and 

convert it into a state table. Each muppet can also have its own set of modules and utilities, and a 

muppet can be instantiated multiple times. This facility permits the construction of multiple 

virtual AutoTutor servers that work with the same client software, yet differ in functionality.  

Consequently, experimenters can quickly construct experimental conditions without altering the 

underlying server code, and can save changes required to the modules to create the variant 

conditions. Currently, two muppets exist.  One muppet reads raw text from a standard TCP/IP 

connection.  The other reads partial state tables constructed by a .NET client that are transmitted 

through Remoting.  An unlimited number of muppets can be constructed as distributed systems 

on the Internet become progressively more complex.   

 The standard AutoTutor-3D server we have developed uses four modules and two 

utilities. As shown in Figure 4, the hub first sends an incoming response, changed into a state 

table by one muppet, to the Language Analysis module. This module performs surface analyses 

on the input to determine what sort of speech act the student utterance is. It also performs some 

text segmentation to aid other modules. The next module in the sequence is the Assessor module. 

Using LSA and the Curriculum Script, the assessments module determines the quality of the 

student response with regards to the tutor’s goals for the lesson. It also generates other metrics, 
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such as the length of the response. With this information in hand, the Dialogue Manager module 

can draw a conversationally and pedagogically appropriate response from the curriculum script. 

Finally, the state table is passed to the Logger, which records the state of the system for the 

current turn, before being passed back to the muppet and from there to the client. 

 The utilities in the standard version of AutoTutor are the Curriculum script and an LSA 

utility. The curriculum script utility grants modules access to a script of topics and the concepts 

the tutor is to teach in those topics, tutor moves, correct and erroneous student responses, and 

common misconceptions on the topic. The LSA utility uses the LSA text similarity algorithm to 

determine how close a student response is to particular expectations and misconceptions about a 

topic.  The LSA utility was trained on a large corpus of documents that are relevant to the subject 

matter.  For the topic of physics, the corpus was a textbook and 10 articles on Newtonian 

physics.  For the topic of computer literacy, the corpus was a textbook and 30 articles on 

hardware, the operating system, and the internet. 

Dialogue manager 
 

The Dialogue Manager is the architecture’s major decision maker.  Other modules 

provide the Dialogue Manager with information it uses to make decisions.  One important input 

is the dialogue information state of the previous turn.  This state information is not a history of 

all previous turns but a summary snapshot of what information is required to successfully 

continue the conversation.  The Dialogue Manager takes in the relevant information and then 

updates the state object with a new dialogue information state and produces a tutor turn for the 

client.  However, there are multiple steps along the way. 

 The Dialogue Manager first receives a state object from the hub.  This state object is 

decompressed and translated into an internal format called a context.  The context contains all 
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dialogue information states and state object elements that are ever used in the Dialogue 

Manager’s computations. In actuality, the Dialogue Manager is a confederation of sub-modules 

that work on a context.  Thus, the context is the common currency for all parts of the Dialogue 

Manager in the same way that the state object is the common currency for AutoTutor-3D 

modules. 

 The planner chain is the first set of sub-modules that the context encounters. In this chain, 

each planner independently considers the context and suggests plans to move the dialogue 

forward and successfully tutor the student.  Each planner considers a different kind of initiative, 

including a student initiative, an opportunistic alternative, and a tutor initiative.  AutoTutor-3D is 

a mixed initiative system, which means that the student can ask questions and to some degree 

take control of the tutoring session.  The student initiative planner looks for evidence of student 

initiative by interpreting student speech acts in the context of the dialogue.  When a sufficient 

student initiative is detected (such as a student question), the student initiative planner pushes a 

plan tree on the context’s plan stack.  These plan trees range from question answering sub-

dialogues to motivational sub-dialogues to repetitions of previous turns.  The opportunistic 

planner looks for opportunities to clarify or otherwise micro-adapt to the student’s progress.  For 

example, the opportunistic planner might push a plan tree to Pump, e.g. “Can you add to that,” 

when the student is doing well but is not verbose.  The opportunistic planner looks for instances 

of the student becoming confused or frustrated with the lack of progress, so the planner pushes a 

plan tree to let the student how much more information the tutor is looking for.  Finally, the tutor 

initiative planner has inbuilt knowledge of tutoring strategies and what elements a student should 

cover during the tutoring session.  It is the tutoring initiative planner that advances the tutoring 

session’s content in a structured way. 
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 Once the planners have pushed their plan trees, the context is passed to a search module 

that performs a depth-first search against the plan trees on the plan stack.  Each node in a plan 

tree is visited recursively.  When a node in a plan tree is visited, its plan is instantiated.  Plans 

must be instantiated because the plan trees on the plan stack are not specific recipes for action, 

but rather templates or intentions for action.  When the plan is instantiated, a specific update rule 

is applied to the context, specific dialogue is generated, or both. For example, the Dialogue 

Manager chooses dialogue moves to maximize student learning. To do this, the Dialogue 

Manager uses the predictions provided by the Assessor and performs an agent-centered search 

(Koenig, 1996) akin to MiniMax (Winston, 1984), which is often used by AI programs to play 

games such as chess.  In this instance, however, the Dialogue Manager is not playing against the 

student, so it tries to maximize the student’s score or potential for learning.  A specific dialogue 

move is eventually chosen and added to the context, followed by a data structure in the context 

being updated to show that the added move has been used.  Finally, the plan tree on the plan 

stack is advanced to the next node. Thus, the results of visitation include the dialogue to be 

spoken, the updated plans, and the updated context elements.   

 Plan trees consist of a core set of structural elements which control the flow of the 

visitation process, along with domain specific plans.  This core set includes sequence, iteration, 

alternation, terminal, and non-terminal elements.  Any of these elements can be embedded in 

another, leading to arbitrarily complex objects.  Each of these elements is both a container for 

plans and a plan itself.  As plans, they have termination conditions that mark when the plan is 

complete.  For example, a sequence is completed either when the plans contained within it are 

exhausted or some success condition is reached which sets the plan complete.  The success 

conditions of plans may be linked together systematically; when one plan is completed, all 
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connected plans are simultaneously satisfied.  Completed plans are popped from the plan stack.  

This process of plan tree traversal continues until a terminal node is visited.  The terminal node is 

a plan to wait for student input.  At this point, the context is translated back into a state object, 

and the state object is passed out of the dialogue manager. 

 Our Dialogue Manager has similarities to dialogue managers developed by other 

researchers, but there are some important differences.  In systems that implement a general 

model of collaborative discourse, there is a great emphasis on the negotiation of plans between 

the agent and the user (Allen et al., 1995).  The goals are negotiated as well as the steps or plans 

to reach them.  A collaboration requires that the user and system share the same goals and that 

they are capable of monitoring progress towards these goals.  Nevertheless, we know from 

research on human tutoring that students rarely take the initiative so it is the tutor that controls 

the lion’s share of the tutoring agenda (Graesser et al., 1995).  Students rarely ask information-

seeking questions or introduce new topics, for example.  Moreover, most students are poor 

judges of their own progress towards goals (Glenberg, Wilkinson & Epstein, 1982; Weaver, 

1990).  For example, Person et al. (1994) reported a near zero correlation between students’ 

answering positively to a tutor’s comprehension gauging question (e.g., “Do you understand?”) 

and the students’ objective understanding of the material.  Both Graesser and Person (1994) and 

Chi et al. (1989) reported a positive correlation between students’ answering NO to such 

comprehension-gauging questions and their objective understanding.  The deeper students are 

better able to identify their knowledge deficits and say they do not understand.  Tutoring is a 

very complex activity in which speech participants have a low amount of shared knowledge and 

students do not judiciously control their agenda.  As a consequence, tutoring is not a 



 31

conversational context that is or should be collaborative and cooperative in the standard ways 

that are discussed in the fields of computational linguistics and discourse processing.   

 In the absence of student initiative, Graesser et al. (1995) found that conventional tutors 

rely heavily on curriculum scripts (McArthur, Stasz, & Zmuidzinas, 1990; Putnam, 1987) with 

topics, subtopics, example problems, and topic-specific questions.  A pervasive pattern in 

conventional tutoring is the 5-step dialogue frame (Graesser & Person, 1994; Person, et al. 1995) 

1. Tutor asks question 

2. Student answers question 

3. Tutor gives short feedback on quality of answer 

4. Tutor and student collaboratively improve the quality of the answer 

5. Tutor assesses student’s understanding of the answer 

As a reflection of conventional tutoring, AutoTutor-3D’s learning goals and the plans to reach 

them are often set in advance.  The Dialogue Manager dynamically constructs very few plans; it 

dynamically sequences plans based on the current session, but most of those plans are pre-built. 

In general models of dialogue, the purposes of utterances must be inferred and depend on the 

task structure.  Generating such inferences is manageable in a narrow situational context, such as 

dialogues between callers and telephone operators or between customers and flight reservation 

systems.  However, there is no successful general dialogue model that has successfully scaled up 

to handle a large class of contexts or all conversational contexts.  In AutoTutor-3D, as with all 

conversation systems that have been successfully implemented, the purposes of nearly all types 

of utterances are known a priori.  This greatly simplifies the process of discourse interpretation: 

The tutor has a loosely specified lesson plan whereas student questions are seen as information 

seeking interruptions to this plan. 
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Comparisons of AutoTutor with Previous Dialog Managers 

 AutoTutor-3D plans share similarities with previous work on dialogue modeling in 

computational linguistics, such as TRINDI (Larsson & Traum, 2000; Traum & Larsson, 2003; 

The TRINDI Consortium, 2001) and COLLAGEN (Rich & Sidner, 1998; Rich, Sidner, & Lesh, 

2001).  Historically, different authors have used the term plan in a variety of contexts, so it is 

worth exploring how the AutoTutor-3D notion of plan fits in this history.  One distinction that 

has been made is the distinction between plans and recipes (Lochbaum, 1998).  Recipes are 

merely sequences of actions, whereas plans have beliefs and desires that must be identified and 

that help drive the actions.   The Dialogue Manager of AutoTutor-3D fits the recipe model more 

than the plan model, although there are vestiges of bona fide plans that are implicitly present (as 

opposed to being explicitly declared as goals and plans in the computer code).      

 The objective of the TRINDI project (The TRINDI Consortium, 2001) is to create an 

approach to dialogue modeling that is suitable for rapid prototyping, promoting domain 

portability, and accommodating varied theories of dialogue processing.  To achieve these three 

goals, the TRINDI project focuses on information state; the information makes the dialogue 

distinct and supports the successful continuation of the dialogue.  The information state approach 

is general enough to accommodate dialogue systems from the simplest finite-state script to the 

most complex Belief-Desire-Intention (BDI) model (Traum & Larsson, 2003; Larsson & Traum, 

2000).  AutoTutor-3D follows the information state theory of dialogue modeling, which requires:  

1. Description of the informational components which constitute the information state. 

2. Formal representations of these components. 

3. External dialogue which triggers the update of the information state. 

4. Internal update rules which select dialogue moves and update the information state. 
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5. Control strategy for selecting update rules to apply, given a particular information state. 

AutoTutor-3D uses a context as its model of dialogue information state.  Based on a student’s 

utterance, the resulting speech act classification of that utterance, and the current context (as 

defined in the previous section), the Dialogue Manager updates the context and generates 

dialogue for the tutor turn.  The control strategy consists both of the recursive search over plan 

trees and the local rules that are applied when a plan is instantiated. 

 COLLAGEN (Rich & Sidner, 1998; Rich et al., 2001) is based on a theory of discourse 

structure (Grosz & Sidner, 1986; Lochbaum, 1998) that distinguishes between three kinds of 

structure: Linguistic, intentional, and attentional.  Linguistic structure is the sequence of 

utterances, whereas intentional structure is the structure of purposes, and attentional state is the 

focus of attention which records salient elements of the discourse at a particular point.  The 

Dialogue Manager of AutoTutor-3D recognizes linguistic structure (how utterances aggregate 

into discourse segments) first by interpreting speech acts in the context of the dialogue.  Given a 

speech act, there are 3 possible relations of that act to the current discourse segment purpose 

(DSP) (Grosz & Sidner, 1986). Either the speech act continues the existing DSP, ends the 

existing DSP, or begins a new DSP.  The Dialogue Manager determines this by looking at both 

the individual act and its role in the current plan.  For example, an information seeking speech 

act like a student question will start a new DSP, whose purpose is to deliver the sought after 

information to the student.  Non-information seeking contributions will either continue the 

existing DSP or end the current DSP, depending on whether a plan is satisfied. Shifts in DSP are 

communicated to the user via discourse markers and canned expressions. 

 Grosz and Sidner (1986) identify two relations in the intentional structure: Dominance 

(satisfying X partly contributes to the satisfaction of Y) and satisfaction-precedence (X must be 
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satisfied before Y).  The AutoTutor-3D plan stack models dominance and precedence relations.  

For example, in answering a problem, the student must demonstrate mastery of all elements of 

the problem.  Each of these elements stands in a dominance relationship to the problem; 

coverage of each contributes to the partial coverage of the problem.  Precedence likewise is 

evident in plan trees for question/answer/clarification dialogues in which the answer must be 

given before clarification.   

 Existing implementations of COLLAGEN are still only an approximation of the 

discourse theory of Grosz and Sidner (1986) because the attentional state is modeled by a stack 

of plans rather than a stack of focus spaces (Rich et al., 2001).  The Dialogue Manager of 

AutoTutor-3D is similar in this respect: Although the Dialogue Manager does use the context as 

a cache approach to attentional state (Grosz & Gordon, 1999; Walker, 1996), it also uses a stack 

of plan trees.  The major difference between Collagen plan trees and our Dialogue Manager plan 

trees is that Collagen plan trees include information about who speaks, the particular 

conversational participant who is performing what act. This information is wired in more directly 

in the separate roles and machinery of the tutor versus learner in AutoTutor.     

Final Comments 

The vision of having a computer communicate with humans in natural language was 

entertained shortly after the computer was invented.  Weizenbaum’s (1966) Eliza program was 

the first conversation system that was reasonably successful, popular, and widely used.  Eliza 

simulated a Rogerian client-centered psychotherapist.  Like a typical Rogerian therapist, Eliza 

tried to get the patient to do the talking by asking the patient questions about the patient’s verbal 

contributions.  Eliza detected keywords and word combinations that triggered rules, which in 

turn generated Eliza’s responses.   The only intelligence in Eliza was the stimulus-response 
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knowledge captured in production rules that operated on keywords and that performed syntactic 

transformations.  What was so remarkable about Eliza is that one or two hundred simple 

production rules could very often create an illusion of comprehension, even though Eliza had no 

depth.  It is conceivable that an Eliza with 20,000 well-selected rules might very well exhibit a 

responsive, intelligent, compassionate therapist, but no one ever tried.   

Unfortunately, by the mid-1980’s most researchers in cognitive science and artificial 

intelligence were convinced that the prospect of building a good conversation system was well 

beyond the horizon. The chief challenges were (a) the inherent complexities of natural language 

processing, (b) the unconstrained, open-ended nature of world knowledge, and (c) the lack of 

research on lengthy threads of connected discourse.  In retrospect, this extreme pessimism about 

discourse and natural language technologies was premature. There have been a sufficient number 

of technical advances in the last decade for researchers to revisit the vision of building dialogue 

systems. The primary technical breakthroughs came from the fields of computational linguistics, 

information retrieval, cognitive science, artificial intelligence, and discourse processes.  The 

representation and processing of connected discourse is much less mysterious after two decades 

of interdisciplinary research in discourse processing (Graesser, Gernsbacher, & Goldman, 2003).  

The field of computational linguistics has produced an impressive array of lexicons, syntactic 

parsers, semantic interpretation modules, and dialogue analyzers that are capable of rapidly 

extracting information from naturalistic text for information retrieval, machine translation, and 

speech recognition (Allen, 1995; Harabagiu, Maiorano, & Pasca, 2002; Jurafsky & Martin, 2000; 

Voorhees, 2001). These advancements in computational linguistics represent world knowledge 

either symbolically, statistically, or a hybrid of these two foundations. For instance, Lenat’s CYC 

system represents a large volume of mundane world knowledge in symbolic forms that can be 
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integrated with a diverse set of processing architectures (Lenat, 1995). The world knowledge 

contained in an encyclopedia can be represented statistically in high dimensional spaces, such as 

LSA. An LSA space provides the backbone for statistical metrics that score essays as reliably as 

experts in English composition (Foltz et al., 2000; Laham, this volume).   

 Natural language dialogue facilities are not expected to do a reasonable job in all 

conversational contexts.  It depends on the subject matter, the knowledge of the learner, the 

expected depth of comprehension, and the expected sophistication of the dialogue strategies.  We 

doubt that natural language dialogue facilities will be impressive when the subject matter 

requires mathematical or analytical precision, when the knowledge level of the user is high, and 

when the user would like to converse with a humorous, witty, or illuminating partner.  A natural 

language dialogue facility would not be well suited to an eCommerce application that manages 

precise budgets that a user carefully tracks.  Nor would a computerized dialogue system be a 

good spouse, parent, comedian, or confidant. However, a natural language dialogue facility is 

feasible in applications that have the following characteristics: 

(1) Imprecise verbal content 

(2) Low-to-medium user knowledge about a topic 

(3) Low-to-medium common ground (shared knowledge) between the user and the 

system  

(4) Earnest literal replies 

AutoTutor fits the bill for tutoring students on qualitative domains when the common ground 

between the tutor and learner is low or moderate rather than high. If the common ground is high, 

then both dialogue participants (i.e., the computer tutor and the learner) will be expecting a 

higher level of precision of mutual understanding and therefore will have a higher risk of failing 
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to meet each other’s expectations. We believe that automated tutoring systems with natural 

language dialogue will be disappointing to the extent that they fail to have one or more of the 

above four characteristics.   
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Table 1 

Example AutoTutor-student dialogue with classified dialogue moves of AutoTutor, classified 

speech acts of the student, and comments.    

 

AutoTutor-1: The sun exerts a gravitational force on the earth as the earth moves in its orbit 

around the sun. Does the earth pull equally on the sun? Explain why. (MAIN QUESTION, 

This is a main question selected from AutoTutor’s currlicum script, which will take 

approximately 30-100 conversation turns to collaborately answer.)  

Student-2: I don't know.  (This expression by the student is classified as a Metacognitive speech 

act because it conveys what the student knows about his/her own knowledge.)  

AutoTutor-3: Could you at least try to give me an answer? That way, we'll have something as a 

starting place to work from.  (PUMP.  This dialogue move encourages the student to say 

more, but does not direct the student to express particular information.)                                                                 

How does Newton's third law of motion apply to this situation?  (HINT.  This dialogue move 

leads the student to articulate a particular sentence, clauses, or proposition.) 

Student-4: What?  (This expression by the student is classified as a Metacommunicative speech 

act because it addresses the communication channel between AutoTutor and student, in this 

case a request for AutoTutor to repeat what was last said.) 

AutoTutor-5: Once again, how does Newton's third law of motion apply to this situation? 

(REPEAT. AutoTutor repeats its last dialogue move after signalling the function of the 

present move with the discourse marker “once again.”) 

Student-6: Does Newton's law apply to opposite forces? (This  expression by the student is 

classified as a Verification Question, which calls for a YES/NO answer.)  
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AutoTutor-7: Yes, right! (ANSWER. AutoTutor answers the student’s question.)                              

Hum. (DISCOURSE MARKER. This is a discourse marker that connects different dialogue 

moves within a turn.  Another good discourse marker is “Okay.”)                                        

There's still something missing from you explanation.  (DISCOURSE MARKER.  

AutoTutor lets the student know more is expected.)                                                                                           

Newton's Third Law refers to the forces exerted by one body on another ______?  

(PROMPT.  This dialogue move encourages the student to fill in a particular word or phrase 

of information, in this case the word “body.”  Prompts are needed for students who are low 

verbal and to elicit a particular noun, verb, or adjective).   

Student-8:  body (Short Answer) 

AutoTutor-9: You're amazing! Bravo!  (POSITIVE FEEDBACK.  AutoTutor gives positive 

feedback on the answer the student just gave in the previous turn.  There are five levels of 

feedback:  Positive, positive neutral, neutral, negative-neutral, and negative).                                                                                                      

Let's move on. (DISCOURSE MARKER)                                                                           

What can you say about the magnitude of the force that the earth exerts on the sun?  (HINT) 

Student-10: What is the difference between a force and a vector? (This expression by the student 

is classified as a Comparison Question.) 

AutoTutor-11: Interesting question. Perhaps, the following answer helps. (DISCOURSE 

MARKER.  Notice that AutoTutor hedges on whether the subsequent answer will be 

satisfying.  Hedges are important when a computer lacks confidence.)                                                                

Vector is an arrow drawn to scale used to represent a vector quantity. (ANSWER.  This 

answer is fetched from a large textbook on physics rather than being canned.  So AutoTutor 

performs information retrieval.)                                                                                                
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Does this answer help you in understanding the material? (ANSWER CONFIRMATION.  

AutoTutor seeks feedback on the quality of the answer it delivers.) 

Student-12: no. (Short answer. The student apparently was not satisfied with AutoTutor’s answer 

to the student’s question.) 

AutoTutor-13: I might not have understood what you meant. (DISCOURSE MARKER)               

Ask another conceptual physics question if you need more information. (QUESTION 

SOLICITATION.  AutoTutor invites the student to ask a question. Question revisions are 

common in modern information retrieval facilities.) 

Student-14: What is the difference between force and a vector?  (The student simply repeated the 

same question, but as shown below, the answer will be different.) 

AutoTutor-15: Force is any influence that tends to accelerate an object; a push or pull; 

measured in Newtons. Force is a vector quantity and vector is an arrow whose length 

represents the magnitude of a quantity and whose direction represents the direction of the 

quantity. (ANSWER.  This answer is once again fetched from the textbook through 

information retreival methods.)                                                                                                                   

Okay, I bet you can get this! (DISCOURSE MARKER)                                                       

The sun experiences the same magnitude of gravitational pool from the earth, as the earth 

does from the _____? (PROMP)   

Student-16: sun (Short answer) 

AutoTutor-17: Yes, right! (POSITIVE FEEDBACK)                                                                    

From the sun. (PROMPT COMPLETION.  This is the correct answer to the prompt that was 

delivered in the previous AutoTutor turn.)                                                                                       
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Let's keep going. (DISCOURSE MARKER)                                                                      

What is going on in this situation between the earth and sun? (HINT) 

Student-18: The sun is pulling on the earth because it is bigger.  (This expression by the student 

is classified as an Assertion because it provides information that helps answer the main 

question. This answer is identified as a misconception, because both bodies are pulling on 

each other.)   

AutoTutor-19:  (No feedback is given to the student even though the student just expressed a 

misconception.  AutoTutor sometimes refrains from negative feedback in order to avoid 

punishing the student when the student is starting to supply information.)                           

Let's try this together: (DISCOURSE MARKER)                                                             

When two objects of different masses hit each other, which one exerts the greater force on 

the other, the heavy object, the light object, or are the forces equal?   (DIAGNOSTIC 

QUESTION  This question diagnostically verifies that the student really does have a 

misconception.) 

Student-20:  the heavy object. (Short answer. This is classified as the student’s answer to the 

diagnostic question, which is incorrect.) 

AutoTutor-21: No. (NEGATIVE FEEDBACK)  the forces are equal in magnitude. Um, well, for 

every force there is a reaction force, such that the two forces constitute an action reaction 

force pair. The two forces have opposite direction and equal magnitude. No matter how 

different the masses of the two objects are, they will exert reaction forces on each other in 

the same magnitude. (CORRECTION  AutoTutor corrects the student’s misconception.)   
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Table 2 

Pedagogical strategies of human tutors and ideal tutors. 

 

(1 ) Expectation and misconception tailored dialogue.  The tutor coaches the student to articulate 

expectations and corrects student misconceptions that are manifested in the dialogue. This is the 

most common strategy that most human tutors implement. 

(2) Socratic tutoring.  The tutor asks the student illuminating questions that lead the student to 

discover and correct his or her own knowledge deficits in a self-regulated fashion. 

(3)  Modeling-scaffolding-fading.   The tutor first models a desired skill, then has the student 

perform the skill while the tutor provides feedback and explanation, and finally fades from the 

process until the student performs the skill all on his or her own. 

(4) Reciprocal teaching.  This is a form of modeling-scaffolding-facing that encourages the 

student to implement strategies of asking questions, answering self-generated questions, 

articulating explanations, and summarizing content. 

 (5) Frontier learning and zone of proximal development.  The tutor selects problems and gives 

guidance that slightly extends the boundaries of what the student already knows or has mastered. 

(6) Building on prerequisites.  Prerequisite concepts and skills are covered in the session before 

moving on to more complex problems and tasks that require mastery of the prerequisites. 

(7) Diagnosis and remediation of deep misconceptions.  The tutor diagnoses deep 

misconceptions that can explain many of the errors and missing information manifested in the 

student’s performance.  These deep misconceptions are corrected after they are diagnosed.
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Figure Caption Page 

 
Figure 1:  A computer screen of AutoTutor for the subject matter of conceptual physics. 

Figure 2.  A computer screen of AutoTutor for the subject matter of introductory computer 

literacy.   

Figure 3.  A computer screen of AutoTutor on conceptual physics with interactive 3D simulation.    

Figure 4.  The AT3D Network Architecture.  The flow of data proceeds clockwise from the 

client, returning a response to the client. 
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When a car without headrests on the seats is struck from 

behind, the passengers often suffer neck injuries. Why do 

passengers get neck injuries in this situation?   

 

 

AutoTutor 

Question 

 Simulation 

Learner 
controls 

parameters 

Learner answers 
question & 

describes what 
happens 



 58

 

 

 


