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AutoTutor is a complex cognitive system that sinesgaa human tutor, or an ideal tutor,
by holding a conversation with the learner in naltlanguage. AutoTutor qualifies as cognitive
system in two fundamental ways (see Forsythe anieXahis volume). First, its core
architecture incorporates a human-like model ofldedge, discourse, and cognitive processes.
Second, AutoTutor recruits these psychological rmeigms to engage the learner cognitively
and thereby promote learning. Therefore, AutoTbtwih simulates cognitive mechanisms of
human tutors and facilitates cognitive activiti¢homan learners.

AutoTutor was developed by Graesser and colleagutbe interdisciplinary Institute for
Intelligent Systems at the University of Memphigd&sser, Lu, Jackson, Hite-Mitchell, Ventura,
Olney, & Louwerse, 2004; Graesser, Person, Ha#8iRG, 2001; Graesser, K. Wiemer-
Hastings, P. Wiemer-Hastings, Kreuz, & TRG; 1998aé3ser, VanLehn, Rose, Jordan, &
Harter, 2001). AutoTutor presents a series oflehging questions or problems that require
approximately a paragraph (3-7 sentences) of irdtion to answer correctly. An example
guestion in conceptual physics is “When a car witheeadrests on the seats is struck from
behind, the passengers often suffer neck injuvidsy do passengers get neck injuries in this
situation?” Although a perfect answer to thissjign is approximately 3-7 sentences in length,
the initial answers by actual human learners gre&jly only 1 word to 2 sentences in length.
This is where tutorial dialogue is particularly piell, whether the dialogue is provided by
AutoTutor or a human tutor. AutoTutor assists #exrher in the evolution of an improved
answer that draws out more of the learner’s knogéetiat is relevant to the answer. The
dialogue between AutoTutor and the learner typydalits 50-20@urns (i.e., the learner expresses
something, then the tutor, then the learner, armh¥o There is anixed-initiativedialogue to the

extent that each dialogue partner can ask questimhstart new topics of discussion. AutoTutor



serves as discourse prosthesikat draws out more of what the learner knowstaat
adaptively improves answers to questions throudjalmaration in natural language.

In this chapter, we hope to accomplish three goBisst, we describe what AutoTutor
does and clarify the scope of its functionalityec@nd, we briefly review the evidence that
AutoTutor both facilitates learning and simulategasonably good conversation partner. Third,
we describe the architecture of AutoTutor’'s comgstem.

What does AutoTutor do?

Perhaps the best way to convey what AutoTutoll es@ut is through an example
conversational dialogue. The conversation beloavasnversation with a student on the topic of
conceptual physics. This depicts the true outpétuboTutor, as opposed to serving as a
hypothetical illustration of what an ideal AutoTutaight do. The conversation begins with a
main question selected by AutoTutor from the repertof questions in its curriculum.

AutoTutor-1: The sun exerts a gravitational foroetloe earth as the earth moves in its
orbit around the sun. Does the earth pull equallyhe sun? Explain why.

Student-2: | don't know.

AutoTutor-3: Could you at least try to give me aswer? That way, we'll have
something as a starting place to work from. HowsdNdewton's third law of motion
apply to this situation?

Student-4: What?

AutoTutor-5: Once again, how does Newton's thivd ¢ motion apply to this situation?

Student-6: Does Newton's law apply to oppositeds?c

AutoTutor-7: Yes, right! Hum. There's still somigidp missing from your explanation.

Newton's Third Law refers to the forces exertesbyg body on anothe ?



Student-8: body

AutoTutor-9: You're amazing! Bravo! Let's move dvhat can you say about the
magnitude of the force that the earth exerts orstimn®

Student-10: What is the difference between a faraa vector?

AutoTutor-11: Interesting question. Perhaps, thiefong answer helps. Vector is an
arrow drawn to scale used to represent a vectartiya Does this answer help you
in understanding the material?

Student-12: no.

AutoTutor-13: | might not have understood what yoeiant. Ask another conceptual
physics question if you need more information.

Student-14: What is the difference between forakawector?

AutoTutor-15: Force is any influence that tendadoelerate an object, a push or pull,
measured in Newtons. Force is a vector quantityvaetbr is an arrow whose length
represents the magnitude of a quantity and whasetn represents the direction
of the quantity. Okay, | bet you can get this! Bou@ experiences the same
magnitude of gravitational pool from the earthftesearth does fromthe _ ?

Student-16: sun

AutoTutor-17: Yes, right! From the sun. What isrgpon in this situation between the
earth and sun?

Student-18: The sun is pulling on the earth becéusdigger.

AutoTutor-19: Let's try this together. When twqgeadts of different masses hit each
other, which one exerts the greater force on therpthe heavy object, the light

object, or are the forces equal?



Student-20: the heavy object.

AutoTutor-21: No. The forces are equal in magnitudi, well, for every force there is a
reaction force, such that the two forces constiéue@ction reaction force pair. The
two forces have opposite direction and equal magdritNo matter how different the
masses of the two objects are, they will exerttreadorces on each other in the
same magnitude.

This example shows that AutoTutor can generaeasanably smooth conversation.
AutoTutor’'s answers are adaptive to what the stugesviously said and appear to be
interpreting the student’s speech acts. Obviotsydialogue is not perfect. One glitch of
AutoTutor, for example, appears to be in turntris hot clear whether AutoTutor is answering
the student’s question that was asked in turn & rcorrectly interpreting turn 6 as an assertion
made by the student. However, for the most pagtconversation is reasonably smooth. It
should be noted that the 21 turns in this examypdha@nge does not completely answer the main
guestion posed by AutoTutor in turn 1. We havedcated experiments on over 1000 students
using AutoTutor, or roughly 2-3 thousand hoursogfded time of conversational dialogue.
Some students require several hundreds of turasdwer a single main question posted by
AutoTutor.

AutoTutor needs to accomplish a number of tasksder to orchestrate a smooth and
adaptive conversation. AutoTutor needs to classify interpret the language expressed by the
student. Students type in their input at predauttwe do have a prototype version that
incorporates speech recognition. AutoTutor needermulate one or more dialogue moves
within each conversational turn in a fashion teakisponsive to the student. Table 1 presents an

analysis of the example dialogue by specifyingdéiegorized dialogue moves of AutoTutor, the



classified speech acts of the student, and comneislp the reader interpret what is going on.
The content expressed by either AutoTutor or thdesit in Table 1 are signified in italics.
Discourse categories of AutoTutor’s dialogue mavage been added in capitals, whereas other

information is added in normal font.

Insert Table 1 about here

The example and analysis in Table 1 illustratentireed-initiative dialogue of
AutoTutor. AutoTutor segments the student’s tunis speech act units and then assigns these
units into categories, such as Assertion, ShorivMensMetacognition, Metacommunication,
Verification Question, and Comparison Questioneréhare approximately 20 categories of
student speech acts; 16 of these are differenyaagés of student questions. AutoTutor attempts
to accommodate virtually any student question,réiese comment, or extraneous speech act.
This requires interpreting the student’s speect lagimplementing modules developed in the
field of computational linguistics (Allen, 1995; @agton, this volume; Jurafsky & Martin,
2000). AutoTutor needs to produce language intiaddo comprehending language. Each turn
of AutoTutor requires the generation of one or niedogue moves that either adaptively
respond to what the student just expressed oathatnce the conversation in a constructive
fashion that answers the main question. The digagoves within a turn are connected by
dialogue markers, as illustrated in Table 1. Sdrague moves are very responsive to the
student’s preceding turn, such as the short feéd{parsitive, neutral, versus negative), the
answers to student questions, and correctionsidést misconceptions. Other dialogue moves
push the dialogue forward in an attempt to coveretkpected answer to the questions. These

forward-directed dialogue moves include Pumps (&gl me more, What elsgHints, Prompts



for specific words or phrases, and Assertions. résponsive and forward-directed dialogue
moves together provide a mixed-initiative dialogu&vhich both parties of the conversation
exert an influence over the conversation. Theseat scripted conversations, but rather are
dynamically emerging exchanges.

AutoTutor delivers its dialogue moves with an aaied conversational agent that has a
text-to-speech engine, facial expressions, gestargspointing. Animated agents have been
become increasingly popular in learning environreemt the web, Internet, and desktop
applications (Cassell & Thorisson, 1999; MassarGdhen, 1995; Johnson, Rickel, & Lester,
2000). Figure 1 shows the interface of one versiofutoTutor on the subject matter of
Newtonian physics. The main question is preseintéige top-right window. This major
guestion (e.g., involving a boy dropping keys ifaliing elevator) remains at the top of the web
page until it is finished being answered duringudtirturn dialogue. The students use the
bottom-right window to type in their contributiofe each turn. The dialogue history between
AutoTutor and student is shown in the bottom-lefidow. The animated conversational agent
resides in the upper-left area. The agent usestdd-speech engine from either AT&T,
SpeechWorks, or a Microsoft Agent (dependent a@nking agreements) to speak the content of
AutoTutor’s turns. Figure 2 shows a somewhat d#ifeéinterface that is used when tutoring
computer literacy. This interface has a displaador diagrams, but no dialogue history

window.

Insert Figures 1, 2, and 3 about here




AutoTutor with interactive 3D simulation

One version of AutoTutor has an embedded intera@L simulation. 3D simulation
provides an additional channel of communicatiodiszuss conceptual physics with the learner.
Each simulation is crafted to cover particular ptygrinciples in an ideal answer or to help
correct particular misconceptions about physiaog: each of the physics problems, we
developed an interactive simulation world3id Studio Max This included the people, objects,
and spatial setting associated with the probleime Student can manipulate parameters of the
situation (e.g., mass of objects, speed of objeldsance between objects) and then ask the
system to simulate what will happen. They can camapheir expected simulated outcome with
the actual outcome after the simulation is complet&oreover, they describe what they see.
Their actions and descriptions are evaluated veigipect to covering the expected principles in
an ideal answer. In order to manage the interagimulation, AutoTutor gives hints and
suggestions, once again scaffolding the learnioggss with dialogue. Thus, AutoTutor
combines interactive simulation with mixed-initisidialog.

Figure 3 shows an example interface for the 3DieBrsf AutoTutor. The question is
presented at the top of the screen, in this cadeefWa car without headsets on the seats is struck
from behind, the passengers often suffer neckiggurWhy do passengers get neck injuries in
this situation?” Beneath the question are two winsl that show the car and truck (middle
window) and the driver in the car (right window)hese components move whenever a
simulation is run. Beneath the question on thieidehe animated agent that guides the
interaction with hints, suggestions, assertiond, @her dialogue moves. These suggestions
include having the student manipulate parametacsy as truck speed, mass of the car, and mass

of the truck. The students also have a numbdreobinary options: Having the head rests in the



car on, showing the skin on the driver, slowing ddie simulation, and vector arrows that
depict forces. The student manipulates these paeamand options, as shown in the bottom
left, before a simulation is run. The activityronipulating these inputs and viewing the
simulation is believed to provide a referentiallpgnded and embodied representation of the
problem, as well as a deeper understanding of ptiyBiransford, Brown, & Cocking, 2000).
However, empirical support for the pedagogical gadtiinteractive simulation has not yet been
substantiated in the literature on cognition argdrirction. The students can run as many
simulations as they wish until they feel they ustiend the relationship between parameters and
outcomes of simulations. However, interacting vaitid viewing the simulations is not all there
is. The participants are also prompted to desavitet they see and answer the main question.
Therefore, deep learning of physics is believednerge from the combination of interactivity,
perceptual simulation, feedback on the simulatzm explaining what happens.

Some previous systems have conversational ageattsdmbined dialogue with
interactive simulation. Some examples of theseegys are Steve (Rickel & Johnson, 1999) and
Mission Rehearsal (Gratch, Rickel, Andre, Cas&&tajan, & Badler, 2002). However,
AutoTutor is the only system that is available loa Internet, that has systematically been tested
on students, and that has flexible tutorial diathat scaffolds interactive simulation.
Pedagogical foundations of AutoTutor

The design of AutoTutor was inspired by three bedif theoretical, empirical, and
applied research. First, there are explanatioedasnstructivist theories of learning (Aleven &
Koedinger, 2002; Chi, deLeeuw, Chiu, LaVancher,498nLehn, Jones, & Chi, 1992).
According to the explanation-based constructivisbries of learning, learning is more effective

and deeper when the learner must actively genexgt@anations, justifications, and functional



procedures than when merely given information &alr@Bransford et al., 2000). Second, there
are intelligent tutoring systems that adaptivepand to student knowledge (Anderson, Corbett,
Koedinger, & Pelletier, 1995; VanLehn, Lynch, et @D02). These tutors give immediate
feedback to learner’s actions and guide the leaonavhat to do next in a fashion that is
sensitive to what the system believes the learmewk. Third, empirical research has
documented the collaborative constructive actigitteat routinely occur during human tutoring
(Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001;, A®03; Graesser, Person, & Magliano,
1995; Moore, 1995). The patterns of discourse uaieVin naturalistic tutoring are imported
into the dialogue management facilities of AutoTuto

One of AutoTutor’s prominent dialogue patternsaliedexpectation and misconception
tailored dialogue(EMT dialogue), which is known to be common in famtutoring. Both
AutoTutor and human tutors typically have a lisaoficipated good answers (callexpectations
and a list ofmisconceptionassociated with each main question or probleme garal of the tutor
is to coach the student in covering the list ofemtations. Another goal is to correct
misconceptions that are manifested in the stud@alksand actions. Yet another goal is to give
feedback and adaptively respond to the studerg. ekpectations and misconceptions associated
with a main question are stored in AutoTutarsriculum script AutoTutor provideseedbacko
the learner (positive, neutral, and negative feeklh@aumpsthe learner for more information
(“What else”),promptsthe learner to fill in missing words, givasts fills in missing
information withassertionsidentifies andtorrectsbad answergnswerdearners’ questions,
andsummarizeanswers. As the learner expresses informationmegry turns, the information in
the 3-7 sentences of an expected answer is evigntoaered and the question is answered.

During the process of supplying the ideal ansvirer Jéarner periodically articulates
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misconceptions and false assertions. If these mésgiions have been anticipated in advance and
incorporated into the program, AutoTutor provides learner with information to correct the
misconceptions. Therefore, as the learner expras®emation over the turns, this information is
compared to expectations and misconceptions, atmlAtor formulates its dialogue moves in a
fashion that is sensitive to the learner input.

AutoTutor does its best to handle questions pbgdtie learner. However, somewhat
surprisingly, available research has revealedghatents rarely ask questions in classrooms,
human tutoring sessions, and AutoTutor sessionsg€3er & Person, 1994; Graesser & Olde,
2003). The rate of learner questions is 1 quegt@r6-7 hours in a classroom environment and 1
per 2 minutes in tutoring. This is disappointingvsdrom the standpoint of a pedagogical theory
that emphasizes curiosity and active inquiry. Hesvethere is a silver lining. This
characteristic of human-tutor interaction makesasier to build a dialogue-based intelligent
tutoring system such as AutoTutor. It is not comagiohally feasible to interpret any arbitrary
input of the student from scratch and to constauttental space that adequately captures what
the learner has in mind. Instead, the best thabPutbr can do is to perform conceptual pattern
matching operations that compare student input @iftectations. Fortunately, therefore, the
prevailing tutorial activities between humans isnpatible with what currently can be handled
computationally within AutoTutor.

AutoTutor uses Latent Semantic Analysis (LSA) agpiimary conceptual pattern
matching algorithm when evaluating whether studemit matches the expectations and
misconceptions. LSA is a high-dimensional statdtiechnique that measures the conceptual
similarity of any two pieces of text (Foltz, Gillra & Kendall, 2000; Kintsch, 1998; Landauer &

Dumais, 1997; Laham, this volume; Landauer, F&ltzaham, 1998). The size may vary from
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being a single word to a sentence, paragraphngtheer document. A cosine is calculated
between the LSA vector associated with expectdigor misconception M) and the vector
associated with learner input I. Expectation Enj@conception M) is scored as covered if the
match between E or M and the learner’s text inpueéts some threshold, which has varied
between .40 and .85 in previous instantiations atoAutor (Graesser, P. Wiemer-Hastings, K.
Wiemer-Hastings, Harter, Person, & TRG, 2000; Oktanceschetti, Karnavat, Graesser, &
TRG, 2002). As the threshold parameter incredbedgarner needs to be more precise in
articulating information and thereby cover the estpgons.

Suppose that there are five key expectations ideal answer that the tutor wants to
cover in an answer to a question. AutoTutor wiledt the dialogue in a fashion that finesses the
students to articulate each of these expectatidngoTutor directs the dialogue through
prompts, hints, and embedded 3D simulations tleataageted for particular expectations.
AutoTutor stays on topic by completing the sub-atjale that covers expectation E before
starting a sub-dialogue on another expectationekample, suppose an answer requires the
expectationthe force of impact will cause the car to expereeadarge forward acceleration.
The following family of prompts is available to encage the student to articulate particular
content words in the expectation:

1. The impact will cause the car to experience a foiwa  ?

2. The impact will cause the car to experience a laageleration in what direction?

3. The impact will cause the car to experience a fodveeceleration with a magnitude that
isvery _ ?

4. The car will experience a large forward accelerasfier the force of ?

12



5. The car will experience a large forward acceleratrom the impacts __~ ?

6. What experiences a large forward acceleration?
The particular prompts that are selected are ttiwgdill in missing information if answered
successfully. That is, the dialogue managemenpooent adaptively selects hints, prompts,
and targeted 3D simulations in an attempt to aehpattern completion. The expectation is
covered when enough of the ideas underlying théeobnvords in the expectation are articulated
by the student so that the LSA threshold is metxaeeded.

Once again, we believe that these dialogue mestmsnof AutoTutor are both
computationally manageable and are very similavtiat human tutors do. Human tutors cannot
deeply comprehend all of the contributions of stugdemost of which are imprecise, vague,
fragmentary, incomplete, and ungrammatical (Graestsal., 1995). The best that most human
tutors can do is to compare student input to grdteid good answers and misconceptions. The
repertoire of anticipated content grows increméytaith tutoring experience. Comparisons
between student input and anticipated contentpsoiimate and scruffy rather than precise and
tidy. LSA provides a suitable algorithm for sudngarison operations. Moreover, the
Expectation and Misconception Tailored (EMT) diafogves of AutoTutor and most human
tutors are not particularly sophisticated from stendpoint of ideal tutoring strategies that have
been proposed in the fields of education and eidifintelligence (Graesser et al., 1995).
Graesser and colleagues videotaped over 100 hboetwralistic tutoring, transcribed the data,
classified the speech act utterances into discaatggories, and analyzed the rate of particular
discourse patterns. These analyses revealeduhmtrhtutors rarely implement intelligent
pedagogical techniqussich adona fideSocratic tutoring strategies, modeling-scaffolding

fading, reciprocal teaching, frontier learning,lding on prerequisites, or diagnosis/remediation
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of deep misconceptions (Collins, Brown, & Newma®89; Palincsar & Brown, 1984; Sleeman
& Brown, 1982). These sophisticated techniquesanemarized in Table 2. Instead of
implementing these and many other sophisticatexlihg strategies, tutors tend to coach
students in constructing explanations accordingecEMT dialog patterns (strategy 1 in Table
2). The EMT dialog strategy is substantially eagi@mplement computationally than are the
sophisticated tutoring strategies. On this dim@msihe computational and psychological

solutions are perfectly compatible.

Insert Table 2 about here

Adapting to learner emotions

We are in the process of developing a version dbAutor that perceives and responds
to learner emotions in addition to the learnerswledge states. AutoTutor is augmented with
sensing devices and signal processing algorithatscthssify affective states of learners.
Emotions are classified on the basis of dialoggpast during tutoring, the content covered, facial
expressions, body posture, mouse haptic pressutekeyboard pressure. This recent project
has two specific objectives. First, AutoTutor veifialyze patterns of facial, body, and dialog
activity that arise while interacting with AutoTutand will classify this input into basic affect
states (such as confusion, frustration, boredotarest, excitement, and insight). Second, we
will investigate whether learning gains and leasenpressions of AutoTutor are influenced by
dialog moves of AutoTutor that are sensitive toldaner’'s emotions. For example, if the
student is extremely frustrated, then AutoTutoispreably should give a good hint or prompt
that directs the student in a more positive leaymiajectory. If the student is bored, AutoTutor

should give more engaging, challenging, and mahggproblems. If the student is very
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absorbed and happy, then AutoTutor should be mihrravasive and stay out of the student’s
way.

There is already some evidence that emotions nbgliitimately interwoven with
complex learning. We recently conducted an expaminm which we observed six different
affect states (frustration, boredom, flow, confusieureka, and neutral) that potentially occur
during the process of learning introductory compliteracy with AutoTutor (Craig, Graesser,
Sullins, & Gholson, in press). The participantsev@4 low-domain knowledge college students.
Expert judges recorded emotions that learners apfigiwere experiencing at random points
during the interaction with AutoTutor. Observa@banalyses revealed significant relationships
between learning gains (posttest-pretest scoresultiple choice tests) and the affective states
of boredom I = -.39), flow ¢ = .29), and confusiom € .33). Correlations with eureka% .03),
and frustrationr(= -.06) were near zero.

These results fit some available theoretical frapréw/that interrelate emotions and
cognition. The positive correlation between coidosand learning is somewhat provocative,
but is actually consistent with a model that assuthatcognitive disequilibriunis one
precursor to deep learning (Graesser & Olde, 20080 & Graesser, 2001). Cognitive
disequilibrium occurs when the learner experiermogdradictions, discrepancies, novel input,
obstacles to goals, decision deadlocks, and majwlkedge gaps. Both cognitive activities and
emotions are experienced until equilibrium is restio The findings that learning correlates
negatively with boredom and positively with floneagzonsistent with predictions from
Csikszentmihalyi’s (1990) analysis fddw experiences. Conscious flow occurs when the student

is so absorbed in the material that time disappéatigue disappears, and extraneous
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interruptions get unnoticed. Experiences of eurg&ee much too rare in the experiment; there
was only one recorded eureka experience in 17 hotals tutoring among the 34 students.

At this point in the project, we have assembledi iastalled most of the emotion sensing
technologies with AutoTutor. We have analyzeddbmponents, features, and representations
of each of the sensing technologies (i.e., dialquatéerns during tutoring, content covered,
facial expressions, body posture, mouse haptispresand keyboard pressure). Software is
currently being developed to interpret the inplihese channels include (1) the AutoTutor log
file with speech acts of student and tutor turssyell as knowledge states achieved from the
tutorial dialog, (2) the body posture pressure mesasent system purchased from Tekscan, (3)
the upper facial sensor device developed by Raar&@& Affective Computing Lab at MIT
(Picard, 1997; Kapoor & Picard, 2002), (4) a haptessure sensor for the mouse (supplied by
MIT), and (5) a keyboard pressure sensor purchizeadTekscan. Affect states will be
interpreted and/or classified on the basis of tifieseinput channels of information.
Computational models are being explored to perfibtrese emotion analyses. These models
have quantitative foundations in Bayesian, hiddemkdv, neural network, and/or dynamical
systems, but are substantially more complex tharstéindard architectures.

Empirical Evaluations of AutoTutor

AutoTutor should be declared a success to the etttahit meets various performance
criteria. Four criteria have been consideredunmevious evaluations of AutoTutor. One type
is technical, and will not be addressed in thigptda In essence, do particular computational
modules of AutoTutor produce output that is vald aneets the intended technical
specifications? We are satisfied, for examplat dur LSA component performs conceptual

pattern matching operations almost as well has hyodges (Graesser, Hu, & McNamara,
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2005; Graesser et al., 2000; Olde et al., 2002}atdour speech act and question classifier has
a high degree of accuracy (Olney et al., 2003segond type of evaluation assesses the quality
of the dialogue moves produced by AutoTutor. Tiato what extent are AutoTutor’s dialogue
moves coherent, relevant, and smooth? A thirémom is whether AutoTutor produces learning
gains. A fourth criterion is whether learners likeracting with AutoTutor. This section

briefly presents what we know so far about the sé@nd third types of evaluation.

Expert judges have evaluated AutoTutor with respecbnversational smoothness and
the pedagogical quality of its dialogue moves (Ber&raesser, Kreuz, Pomeroy, & TRG,
2001). The experts’ mean ratings lean to the pesénd of the rating scales on conversational
smoothness and pedagogical quality, but thereois i@ improve in the naturalness and
pedagogical effectiveness of its dialogue. Oneguaing evaluation has beerbgstander Turing
teston the naturalness of AutoTutor’s dialogue mowergon, Graesser, & TRG, 2002). In
these studies, there was a random selection of tutwes in the tutorial dialogs between
students and AutoTutor. Six human tutors (fromtthier pool on computer literacy at the
University of Memphis) were asked to fill in whaely would say at these random points. At
each of these random tutor turns, the corpus auedaivhat the human tutors generated and what
AutoTutor generated. A group of computer literattydents was asked to discriminate between
dialogue moves generated by a human versus a cempatf in fact were by human and half
were by computer. The results surprisingly reve#hat the bystander students were unable to
discriminate whether particular dialogue moves Ibaen generated by a computer versus a
human. Thel’ discrimination scores were near zero.

The above results of the bystander Turing test@uppe claim that AutoTutor is a good

simulation of human tutors. AutoTutor managesawehproductive and reasonably smooth
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conversations even though it does not completefierstand what the student expresses. There
is an alternative interpretation, however, whicfug as interesting. Perhaps tutorial dialogue is
not highly constrained, so the tutor has a highrelegf latitude on what can be said without
disrupting the conversation. In essence, therdinfig a large landscape of options on what the
tutor can say at most points in the dialogue. ddmeversations are flexible and resilient, not
fragile.

Evaluations of tutoring systems on learning gasngarhaps the most important
performance criterion. It is well established tbaé-to-one human tutoring is a powerful
method of promoting learning (Cohen, Kulik, & Kulik982; Corbett, 2001), even though the
vast majority of the human tutors have moderateaiorknowledge and little or no training in
pedagogy or tutoring. These unaccomplished hunt@anstenhanced learning with an effect size
of .4 standard deviation units (called sigma’s)jchttranslates to approximately an
improvement of half a letter grade. According todn (1984), accomplished human tutors can
produce effect sizes as high as 2-sigma in basihenatics. However, the magnitude of this
effect is suspect because only two studies hawestigated the impact of accomplished tutors on
learning gains. In the arena of computer tutertglligent tutoring systems with sophisticated
pedagogical tactics, but no natural language djaogduce effect sizes of approximately 1-
sigma in the topics of algebra, geometry, and qiaive physics (Corbett, 2001; Van Lehn et
al., 2002). Learning gains from tutors have beestrpoonounced on subject matters that are
guantitative, with precise, clearcut answers.

AutoTutor has been evaluated on learning gainswersl experiments on the topics of
computer literacy (Graesser, Lu et al., 2004; GraedMoreno, Marineau, Adcock, Olney,

Person, & TRG,. 2003; Person, Graesser, Bautisigh@&lvs, & Tutoring Research Group, 2001)
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and conceptual physics (Graesser, Jackson et@8; 2anLehn, Graesser, Jackson, Jordan,
Olney, & Rose, 2004). The results of 9 experiméiatge been quite positive. Previous versions
of AutoTutor have produced gains of .2 to 1.5 sigmanean of .8), depending on the learning
performance measure, the comparison conditiongefitetest scores or a control condition in
which the learner reads the textbook for an eqaiaamount of time as the tutoring session),
the subject matter, and the version of AutoTutgprdximately a dozen measures of learning
have been collected in these assessments on ihe tbwomputer literacy and physics,
including: (1) multiple choice questions on shallknowledge that tap definitions, facts and
properties of concepts, (2) multiple choice question deep knowledge that taps causal
reasoning, justifications of claims, and functionatlerpinnings of procedures, (3) essay quality
when students attempt to answer challenging prablé) a cloze task that has subjects fill in
missing words of texts that articulate explanategsoning on the subject matter, and (5)
performance on problems that require problem sglvifhese results place previous versions of
AutoTutor somewhere between an unaccomplished haatanand an intelligent tutoring
system. Moreover, one recent evaluation of physitteing remarkably reported that the
learning gains produced by accomplished humangutocomputer mediated communication
were equivalent to the gains produced by AutoT(Man Lehn et al., 2004). It is informative to
note that the largest learning gains from AutoThi@ve been on deep reasoning measures rather
than measures of shallow knowledge. AutoTutor&bfems and dialogue facilities were
designed to target deep reasoning so this resslowiie expected.

One persistent question is what it is about Autof that facilitates learning. For
example, is it the dialogue content or the animaftgeht that explains the learning gains? What

roles do motivation and emotions play, over andralibe cognitive components? We suspect
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that the animated conversational agent will fageisame students, and possibly be more
motivating. Learning environments have only relyeindd animated conversational agents with
facial features synchronized with speech and inescases appropriate gestures (Cassell &
Thorisson, 1999, Johnson, Rickel, & Lester, 200@any students will be fascinated with an
agent that controls the eyes, eyebrows, mouth, tleth, tongue, cheekbones, and other parts of
the face in a fashion that is meshed appropriatély the language and emotions of the speaker
(Picard, 1997). The agents provide an anthropomotmman-computer interface that
simulates having a conversation with a human. Wildbe exciting to some, frightening to a
few, annoying to others, and so on. There is sewigence that these agents tend to have a
positive impact on learning or on the learner'scpgtions of the learning experience, compared
with speech alone or text controls (Atkinson, 20Wdreno, Mayer, Spires, & Lester, 2001).
However, additional research is needed to deterthe@recise conditions, agent features, and
levels of representation that are associated wédming gains. According to Graesser, Moreno
et al. (2003), it is the dialogue content, notspeech or animated facial display, that influences
learning, whereas the animated agent can havdlaantial role on motivation (positive,

neutral, or negative). As expressed in Graessereiw et al. (2002), “the medium is not the
message — the message is the message.” Learmageafly is facilitated by a tutor that
communicates the right content at the right timth&right student, whereas motivation is
influenced by the aesthetics of the animated ag@nie rather provocative result is that there is a
near zero correlation between learning gains amdrhach the students like the conversational
agents (Moreno, Klettke, Nibbaragandla, GraessérR&, 2002). Therefore, it is important to
distinguish liking from learning in this area osearch. Although the jury is still be out on what

it is exactly about AutoTutor that leads to leaghgains, the fact is that students learn from the
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intelligent tutoring system and some enjoy haviogwersations with AutoTutor in natural
language.
Architecture of AutoTutor

In the introductory chapter to this volume, Fongyaind Xavier argue that a cognitive
system uses “plausible computational models of luoagnitive processes as a basis for human
machine interactions” (page 3). This is a distictonception of what an intelligent system
interacting with a human should be, a stance fackvive have considerable sympathy.
Forsythe and Xavier propose two requirements fohgsusystem: The system should posses an
accurate model of both the user’s knowledge andise€'s cognitive processes. AutoTutor’s
user modeling does in fact attempt to recover soihtiee knowledge and cognitive processes of
the student learner. But it does so only stat@iflfiand coarsely, not symbolically and precisely.
For example, LSA provides a statistical approxioratf what the student knows about each
expectation, as well as the student’s overall keoge about the subject matter. AutoTutor’s
conversation logs also keep track of how verbosestudent is (measured as words per student
turn) and how much the student takes the initigimeasured as the number of student
guestions). However, that is the limit on what @utor knows about the student. This learner
modeling of AutoTutor is intentionally minimal bagcse of the vagueness and indeterminacy of
student contributions and because we know thergmaits to how much human tutors know
about the students’ knowledge states (Graessér é085).

The computational model underlying AutoTutor isalmumore refined from the
standpoint of its attempts to model what humanrsutim. We indeed designed AutoTutor to

incorporate the cognitive representations and gsE®of actual human tutors. For example, the
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Expectation and Misconception Tailored (EMT) dialeg are distinctly modeled to match the
dialogue patterns and pedagogical strategies ofhuntors.

This section describes the overall computationghitecture of AutoTutor. Given that
many versions of AutoTutor have been developeddasdribed (Graesser et al., 1999, 2001),
we describe our most recent version that accommedateractive 3D simulation. This version
is called AutoTutor-3D, even though there is thearpof removing the interactive 3D
simulation module. We subsequently focus on oodute that is particularly at the heart of
AutoTutor, namely dialogue management.

Overall architecture of AutoTutor-3D

AutoTutor 3D is a client-server application on theernet that usestain clientprotocol
with the asynchronous transmission of small datke@ (< 20K). In a dialogue turnpacketis
sent from the client (i.e., the computer or worlietathat one learner interacts with) to the
server (the central computer that handles manynéggay and back again. These packets contain
the global state of the tutoring session; all eftisable history and information of the tutoring
session is stored in a packet. As a consequeresetlier can “forget” about a client after a
packet has been processed.

There are two major reasons for this asynchroaotisitecture. The first reason appeals
to computational efficiency. In an asynchronougleipthe server maintains no connection
information or memory resources for a particulgerdl Consequently, memory resource
demands do not increase with the number of cliefhlss process closely resembles the
operating system’s notion of a context switch, vebgra server gives each client the impression
that he/she is the only user, while simultaneoaslying thousands of clients in the background.

The second reason appeals to ease of testingagynchronous system can be tested more
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easily because all of the current state informasaxplicit in a packet. This greatly facilitates
unit testing, debugging, and interoperability.Hbald be noted that these two reasons for the
packet-based asynchronous architecture are entioefputational and practical, as opposed to
being motivated by theoretical cognitive mechanisitss doubtful that this design decision
makes any sense at all from the standpoint of pdggical plausibility.

The packet is represented as a binary serializsd &nown as th&tate object This
class implements an interface for every componttiteoserver. These interfaces have a dual
purpose: to declare what data a component neeasdtioer components and to create storage
for a component’s state for the next turn. Theeefall of the dependencies between modules
are explicit in the state object. The state obfjether simplifies the system by being the input
and output of every component. Therefore, to lealbasic grasp of the system, one only needs
to understand the dependencies and data in tleeatipgtct. A packet is essentially a local data
structure that permits the server to reconstruegtbbal history of all modules in the system for
that one client.

The components of the system are divided iméalules, utilitiesand thehub. The
AutoTutor-3D server is a distributdéulib and spokeapplication that may reside on multiple
servers or on a single server. In the standardahdbspokes configuration, only the hub knows
about the existence of the modules. Thereforecamponent that provides the data specified
by the state object may be interchangeably usexist@ted previously, the hub receives a state
object from the client and then passes the stgézbto variousnodulesn a scripted order. The
basic architecture concept and hub are similadnedXARPA Communicator (Xu & Rudnicky,
2000). However, in AutoTutor-3D, modules are dedirby the fact that they input and output

state objects, which greatly simplifies communmatand interoperability between modules.
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Modules may call various utilities, such as LSAiliies or databases that have their own
distinctive interface. The AutoTutor-3D architeetus much like a production line in that
modules each do a small bit of the work and sulessgquodules are dependent on preceding
ones. Just as in a production line, the module®aly interested in the work in front of them
and forget about previous work. The AutoTutor-3Bh#tecture is somewhat like a blackboard
model (Anderson, 1983; Laird, Newell, & Rosenblodr@87) in which items are written on a
blackboard and modules are only interested inqadar items. However, in the present model,
the blackboard gets passed from one module todakie and when the modules are finished with
the blackboard they forget about it.

There are theoretical reasons for adopting a nao@duthitecture with packets containing
state objects. The architecture emulates a modafmitive architecture that is also contextually
rich. Fodor (1983) and many others in the cogaiigiences believe that the human mind can be
segregated into a set of semi-autonomous modu¢pdnform special-purpose functions, such
as visual perception, syntactic language parsetgeral from episodic memory, executive
decisions, and so forth. At the same time, howeberinput and constraints operating on each
module M should be sufficiently rich and informatigbout other modules that module M can
perform its computations intelligently. Modulesitltan peak at a limited snapshot of outputs
from other modules are inherently limited.

In order to gain a more concrete understandirauofarchitecture, consider Figure 4.

The Client computer sends a state object to thedflal the student has entered an utterance.
The state object is first passed to the Languagdy&ar which segments the utterance into main
clauses, parses the clauses, and assigns a sjpeéaleach main clause (Olney et al, 2003). The

Language Analyzer uses the Conexor EngLite pafsgygnainen & Jarvinen, 1997) as a utility.

24



The modified state object is sent to the Hub, whien sends it to the Assessor. The Assessor
updates the student model and produces a setditpoas about the likely effects of alternative
dialogue moves on the student model. The Assesss LSA and the Curriculum Script
database (i.e., the major content repository ohmaestions and dialogue moves) to update the
student model and make predictions. Next the Asggssses the updated state object to the
Hub, which forwards it to the Dialogue Manager.eTialogue Manager consults the output of
the previous modules as well as the dialogue indtion state of the previous turn (not shown).
The Dialogue Manager subsequently updates theglialmformation state of the state object
and provides it with dialogue for the tutor’s turfhe updated state object is passed to the Hub,
which forwards it back to the client. It shouldm@ed that the state object presented in Figure 4

is highly simplified, but the process of computatie accurately specified.

Insert Figure 4 about here

It is worthwhile to point out a few technical ptsrfor those who are interested in
implementing similar systems. AutoTutor 3D is vait in C# and Visual Basic .NET, both
languages that run atop the managed .NET FrameavatkCommon Language Runtime (CLR).
The CLR offers language level compatibility (Micodis.NET Technology Overview 2004). In
other words, any component of AutoTutor can eailyjymunicate with any other component, as
long as the component is written in a CLR compatlahguage. Over 30 programming
languages have CLR compatible compilers (Richi®420so almost any programmer can use
the language of their choice to add functionalityite system. The .NET Framework offers a
variety of libraries, including the Remoting systdmt allows objects to be quickly and

transparently accessed over the network and thassfthe basis of the scalable infrastructure.
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Both the Framework and the CLR virtual machinesanWindows, Linux, Mac OS X, and other
operating systems by using open source runtimdsasid/lono and Portable.NET.

The AutoTutor-3D server has a variety of protdcahslators that convert the data stream
from clients into state tables that the moduleswaderstand. These “multi-protocol personal
translators” are affectionately knownmasippets To make AutoTutor 3D compatible with a
new piece of client software, regardless of thguage it is written in or the way it transmits
data, a programmer simply needs to write a new ®iujgoparse the data from the client and
convert it into a state table. Each muppet canlads@ its own set of modules and utilities, and a
muppet can be instantiated multiple times. Thidifggermits the construction of multiple
virtual AutoTutor servers that work with the santierdt software, yet differ in functionality.
Consequently, experimenters can quickly constryggeemental conditions without altering the
underlying server code, and can save changes eeaithe modules to create the variant
conditions. Currently, two muppets exist. One netppads raw text from a standard TCP/IP
connection. The other reads partial state taldastoucted by a .NET client that are transmitted
through Remoting. An unlimited number of muppets be constructed as distributed systems
on the Internet become progressively more complex.

The standard AutoTutor-3D server we have develgsed four modules and two
utilities. As shown in Figure 4, the hub first serah incoming response, changed into a state
table by one muppet, to the Language Analysis n@dihis module performs surface analyses
on the input to determine what sort of speechrecstudent utterance is. It also performs some
text segmentation to aid other modules. The nextulsoin the sequence is the Assessor module.
Using LSA and the Curriculum Script, the assessmemddule determines the quality of the

student response with regards to the tutor’'s doalhe lesson. It also generates other metrics,
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such as the length of the response. With this imé&tion in hand, the Dialogue Manager module
can draw a conversationally and pedagogically gppate response from the curriculum script.
Finally, the state table is passed to the Logghichvrecords the state of the system for the
current turn, before being passed back to the nmugppefrom there to the client.

The utilities in the standard version of AutoTuéoe the Curriculum script and an LSA
utility. The curriculum script utility grants modeg access to a script of topics and the concepts
the tutor is to teach in those topics, tutor moeestect and erroneous student responses, and
common misconceptions on the topic. The LSA utilisgs the LSA text similarity algorithm to
determine how close a student response is to pkatiexpectations and misconceptions about a
topic. The LSA utility was trained on a large assppf documents that are relevant to the subject
matter. For the topic of physics, the corpus weextbook and 10 articles on Newtonian
physics. For the topic of computer literacy, tbeptis was a textbook and 30 articles on
hardware, the operating system, and the internet.

Dialogue manager

The Dialogue Manager is the architecture’s majaigien maker. Other modules
provide the Dialogue Manager with information ieago make decisions. One important input
is the dialogue information state of the previaust This state information is not a history of
all previous turns but a summary snapshot of wifatmation is required to successfully
continue the conversation. The Dialogue Manaderstan the relevant information and then
updates the state object with a new dialogue inébion state and produces a tutor turn for the
client. However, there are multiple steps aloreiay.

The Dialogue Manager first receives a state olfjeat the hub. This state object is

decompressed and translated into an internal focalkd acontext The context contains all
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dialogue information states and state object elésrtbat are ever used in the Dialogue
Manager’s computations. In actuality, the Dialoenager is a confederation of sub-modules
that work on a context. Thus, the context is @mon currency for all parts of the Dialogue
Manager in the same way that the state objeceisdmmon currency for AutoTutor-3D
modules.

The planner chain is the first set of sub-modthas the context encounters. In this chain,
each planner independently considers the contektaggests plans to move the dialogue
forward and successfully tutor the student. Edahrer considers a different kind of initiative,
including a student initiative, an opportunistiteahative, and a tutor initiative. AutoTutor-3D is
a mixed initiative system, which means that thelesti can ask questions and to some degree
take control of the tutoring session. The studdtiaitive planner looks for evidence of student
initiative by interpreting student speech actsim ¢ontext of the dialogue. When a sufficient
student initiative is detected (such as a studeestipn), the student initiative planner pushes a
plan tree on the context’s plan stack. These {ptas range from question answering sub-
dialogues to motivational sub-dialogues to repmtgiof previous turns. The opportunistic
planner looks for opportunities to clarify or otivese micro-adapt to the student’s progress. For
example, the opportunistic planner might push a pi@e to Pump, e.g. “Can you add to that,”
when the student is doing well but is not verboBke opportunistic planner looks for instances
of the student becoming confused or frustrated thighlack of progress, so the planner pushes a
plan tree to let the student how much more inforonathe tutor is looking for. Finally, the tutor
initiative planner has inbuilt knowledge of tutagistrategies and what elements a student should
cover during the tutoring session. It is the tugrinitiative planner that advances the tutoring

session’s content in a structured way.
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Once the planners have pushed their plan treegahtext is passed to a search module
that performs a depth-first search against the s on the plan stack. Each node in a plan
tree is visited recursively. When a node in a ptes is visited, its plan is instantiated. Plans
must be instantiated because the plan trees gridhestack are not specific recipes for action,
but rather templates or intentions for action. Wtiee plan is instantiated, a specific update rule
is applied to the context, specific dialogue isegated, or both. For example, the Dialogue
Manager chooses dialogue moves to maximize stldamnting. To do this, the Dialogue
Manager uses the predictions provided by the Asses®l performs an agent-centered search
(Koenig, 1996) akin to MiniMax (Winston, 1984), whiis often used by Al programs to play
games such as chess. In this instance, howeeeRithogue Manager is not playing against the
student, so it tries to maximize the student’s s@orpotential for learning. A specific dialogue
move is eventually chosen and added to the corftakiywed by a data structure in the context
being updated to show that the added move hasusszh Finally, the plan tree on the plan
stack is advanced to the next node. Thus, thetsesiwisitation include the dialogue to be
spoken, the updated plans, and the updated cazltarents.

Plan trees consist of a core set of structurahefgs which control the flow of the
visitation process, along with domain specific glaThis core set includes sequence, iteration,
alternation, terminal, and non-terminal elememay of these elements can be embedded in
another, leading to arbitrarily complex objectsaack of these elements is both a container for
plans and a plan itself. As plans, they have teation conditions that mark when the plan is
complete. For example, a sequence is completkdraithen the plans contained within it are
exhausted or some success condition is reachedh\sbis the plan complete. The success

conditions of plans may be linked together systeratly; when one plan is completed, all
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connected plans are simultaneously satisfied. @ateyb plans are popped from the plan stack.
This process of plan tree traversal continues art#rminal node is visited. The terminal node is
a plan to wait for student input. At this poiritetcontext is translated back into a state object,
and the state object is passed out of the dialoyusager.

Our Dialogue Manager has similarities to dialoguenagers developed by other
researchers, but there are some important diffesentn systems that implement a general
model of collaborative discourse, there is a geagphasis on the negotiation of plans between
the agent and the user (Allen et al., 1995). Tdwgare negotiated as well as the steps or plans
to reach them. A collaboration requires that ther@and system share the same goals and that
they are capable of monitoring progress towardsalymals. Nevertheless, we know from
research on human tutoring that students rareby tiad initiative so it is the tutor that controls
the lion’s share of the tutoring agenda (Graessal.,€1995). Students rarely ask information-
seeking questions or introduce new topics, for gtamMoreover, most students are poor
judges of their own progress towards goals (Glegbafilkinson & Epstein, 1982; Weaver,
1990). For example, Person et al. (1994) repatedar zero correlation between students’
answering positively to a tutor’'s comprehensiongyjagl question (e.g., “Do you understand?”)
and the students’ objective understanding of theeriel. Both Graesser and Person (1994) and
Chi et al. (1989) reported a positive correlatietween students’ answering NO to such
comprehension-gauging questions and their objectnerstanding. The deeper students are
better able to identify their knowledge deficitslazay they do not understand. Tutoring is a
very complex activity in which speech participanéve a low amount of shared knowledge and

students do not judiciously control their agenéa.a consequence, tutoring is not a
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conversational context that is or should be collatiee and cooperative in the standard ways
that are discussed in the fields of computatioingliistics and discourse processing.

In the absence of student initiative, Graessat.€1995) found that conventional tutors
rely heavily on curriculum scripts (McArthur, StagzZmuidzinas, 1990; Putnam, 1987) with
topics, subtopics, example problems, and topicipepiestions. A pervasive pattern in
conventional tutoring is the 5-step dialogue frg@eaesser & Person, 1994; Person, et al. 1995)

1. Tutor asks question

2. Student answers question

3. Tutor gives short feedback on quality of answer

4. Tutor and student collaboratively improve the qyadf the answer

5. Tutor assesses student’s understanding of the answe
As a reflection of conventional tutoring, AutoTWH®D’s learning goals and the plans to reach
them are often set in advance. The Dialogue Mardgemically constructs very few plans; it
dynamically sequences plans based on the currssibse but most of those plans are pre-built.
In general models of dialogue, the purposes ofattees must be inferred and depend on the
task structure. Generating such inferences is geaide in a narrow situational context, such as
dialogues between callers and telephone operatdrsteeen customers and flight reservation
systems. However, there is no successful geneaigdie model that has successfully scaled up
to handle a large class of contexts or all convEnsal contexts. In AutoTutor-3D, as with all
conversation systems that have been successfyllgmented, the purposes of nearly all types
of utterances are known a priori. This greatlydifies the process of discourse interpretation:
The tutor has a loosely specified lesson plan wasestudent questions are seen as information

seeking interruptions to this plan.
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Comparisons of AutoTutor with Previous Dialog Maeegy

AutoTutor-3D plans share similarities with prevsowork on dialogue modeling in
computational linguistics, such as TRINDI (Larsébiiraum, 2000; Traum & Larsson, 2003,
The TRINDI Consortium, 2001) and COLLAGEN (Rich &8er, 1998; Rich, Sidner, & Lesh,
2001). Historically, different authors have uske termplanin a variety of contexts, so it is
worth exploring how the AutoTutor-3D notion of pléts in this history. One distinction that
has been made is the distinction between planseaipes (Lochbaum, 1998). Recipes are
merely sequences of actions, whereas plans hawdsahd desires that must be identified and
that help drive the actions. The Dialogue ManagexutoTutor-3D fits the recipe model more
than the plan model, although there are vestigbé®oé fide plans that are implicitly present (as
opposed to being explicitly declared as goals dadspin the computer code).

The objective of the TRINDI project (The TRINDI Csortium, 2001) is to create an
approach to dialogue modeling that is suitabledpid prototyping, promoting domain
portability, and accommodating varied theoriesiafajue processing. To achieve these three
goals, the TRINDI project focuses on informatioatst the information makes the dialogue
distinct and supports the successful continuatidchedialogue. The information state approach
is general enough to accommodate dialogue systemmsthe simplest finite-state script to the
most complex Belief-Desire-Intention (BDI) modek&lim & Larsson, 2003; Larsson & Traum,
2000). AutoTutor-3D follows the information stakeory of dialogue modeling, which requires:

1. Description of the informational components whicimstitute the information state.
2. Formal representations of these components.
3. External dialogue which triggers the update ofitfiermation state.

4. Internal update rules which select dialogue movesupdate the information state.
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5. Control strategy for selecting update rules to gpgiven a particular information state.
AutoTutor-3D uses a context as its model of diatoguiormation state. Based on a student’s
utterance, the resulting speech act classificatfdhat utterance, and the current context (as
defined in the previous section), the Dialogue Mpamaipdates the context and generates
dialogue for the tutor turn. The control strategysists both of the recursive search over plan
trees and the local rules that are applied whdaraip instantiated.

COLLAGEN (Rich & Sidner, 1998; Rich et al., 2004 )based on a theory of discourse
structure (Grosz & Sidner, 1986; Lochbaum, 1998} thstinguishes between three kinds of
structure: Linguistic, intentional, and attentian&inguistic structure is the sequence of
utterances, whereas intentional structure is thetsire of purposes, and attentional state is the
focus of attention which records salient elemehtb® discourse at a particular point. The
Dialogue Manager of AutoTutor-3D recognizes lingjaistructure (how utterances aggregate
into discourse segments) first by interpreting spegcts in the context of the dialogue. Given a
speech act, there are 3 possible relations oftttab the current discourse segment purpose
(DSP) (Grosz & Sidner, 1986). Either the speecltantinues the existing DSP, ends the
existing DSP, or begins a new DSP. The Dialogueddar determines this by looking at both
the individual act and its role in the current pldfor example, an information seeking speech
act like a student question will start a new DSRo$e purpose is to deliver the sought after
information to the student. Non-information segkaontributions will either continue the
existing DSP or end the current DSP, depending logthrer a plan is satisfied. Shifts in DSP are
communicated to the user via discourse markercanded expressions.

Grosz and Sidner (1986) identify two relationgha intentional structure: Dominance

(satisfying X partly contributes to the satisfantaf Y) and satisfaction-precedence (X must be
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satisfied before Y). The AutoTutor-3D plan stackd®ls dominance and precedence relations.
For example, in answering a problem, the studerst m@monstrate mastery of all elements of
the problem. Each of these elements stands imandoce relationship to the problem;
coverage of each contributes to the partial coverdghe problem. Precedence likewise is
evident in plan trees for question/answer/clartfaradialogues in which the answer must be
given before clarification.

Existing implementations of COLLAGEN are still grdn approximation of the
discourse theory of Grosz and Sidner (1986) becthgsattentional state is modeled by a stack
of plans rather than a stack of focus spaces (&ieh, 2001). The Dialogue Manager of
AutoTutor-3D is similar in this respect: Althoudhet Dialogue Manager does use the context as
a cache approach to attentional state (Grosz & @oril999; Walker, 1996), it also uses a stack
of plan trees. The major difference between Celtaglan trees and our Dialogue Manager plan
trees is that Collagen plan trees include inforamaéibout who speaks, the particular
conversational participant who is performing whett &his information is wired in more directly
in the separate roles and machinery of the tutsugelearner in AutoTutor.

Final Comments

The vision of having a computer communicate witmhaas in natural language was
entertained shortly after the computer was inventéizenbaum’s (1966) Eliza program was
the first conversation system that was reasonaldgessful, popular, and widely used. Eliza
simulated a Rogerian client-centered psychotherapike a typical Rogerian therapist, Eliza
tried to get the patient to do the talking by agkine patient questions about the patient’s verbal
contributions. Eliza detected keywords and wonthloimations that triggered rules, which in

turn generated Eliza’s responses. The only igegice in Eliza was the stimulus-response
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knowledge captured in production rules that opératekeywords and that performed syntactic
transformations. What was so remarkable aboutldizhat one or two hundred simple
production rules could very often create an illasad comprehension, even though Eliza had no
depth. It is conceivable that an Eliza with 20,089I-selected rules might very well exhibit a

responsive, intelligent, compassionate therapigtnb one ever tried.

Unfortunately, by the mid-1980’s most researchersognitive science and artificial
intelligence were convinced that the prospect d@tling a good conversation system was well
beyond the horizon. The chief challenges wereh@jrtherent complexities of natural language
processing, (b) the unconstrained, open-endedeaafworld knowledge, and (c) the lack of
research on lengthy threads of connected discoumnsetrospect, this extreme pessimism about
discourse and natural language technologies wasgiuee. There have been a sufficient number
of technical advances in the last decade for rebeas to revisit the vision of building dialogue
systems. The primary technical breakthroughs caore the fields of computational linguistics,
information retrieval, cognitive science, artificiatelligence, and discourse processes. The
representation and processing of connected disedsirauch less mysterious after two decades
of interdisciplinary research in discourse proaag$Graesser, Gernsbacher, & Goldman, 2003).
The field of computational linguistics has produeedimpressive array of lexicons, syntactic
parsers, semantic interpretation modules, andgli@l@nalyzers that are capable of rapidly
extracting information from naturalistic text faformation retrieval, machine translation, and
speech recognition (Allen, 1995; Harabagiu, Maiota%a Pasca, 2002; Jurafsky & Martin, 2000;
Voorhees, 2001). These advancements in computatingaistics represent world knowledge
either symbolically, statistically, or a hybrid thiese two foundations. For instance, Lenat’'s CYC

system represents a large volume of mundane wodd/ledge in symbolic forms that can be
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integrated with a diverse set of processing archites (Lenat, 1995). The world knowledge
contained in an encyclopedia can be representastisi@ly in high dimensional spaces, such as
LSA. An LSA space provides the backbone for stasimetrics that score essays as reliably as
experts in English composition (Foltz et al., 200&ham, this volume).

Natural language dialogue facilities are not expeto do a reasonable job in all
conversational contexts. It depends on the subjatter, the knowledge of the learner, the
expected depth of comprehension, and the expectgdssication of the dialogue strategies. We
doubt that natural language dialogue facilitied tél impressive when the subject matter
requires mathematical or analytical precision, wtenknowledge level of the user is high, and
when the user would like to converse with a humsyeuitty, or illuminating partner. A natural
language dialogue facility would not be well suitecan eCommerce application that manages
precise budgets that a user carefully tracks. idmrld a computerized dialogue system be a
good spouse, parent, comedian, or confidant. Howeveatural language dialogue facility is
feasible in applications that have the followinguacteristics:

(1) Imprecise verbal content

(2) Low-to-medium user knowledge about a topic

(3) Low-to-medium common ground (shared knowledge) betwthe user and the

system

(4) Earnest literal replies
AutoTutor fits the bill for tutoring students onalitative domains when the common ground
between the tutor and learner is low or moderdtesrahan high. If the common ground is high,
then both dialogue participants (i.e., the comptuttar and the learner) will be expecting a

higher level of precision of mutual understanding ¢herefore will have a higher risk of failing
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to meet each other’s expectations. We believeabhtmated tutoring systems with natural
language dialogue will be disappointing to the ekthat they fail to have one or more of the

above four characteristics.
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